问题描述
我是使用 GPU 进行并行编程的新手,所以如果问题过于宽泛或含糊,我深表歉意.我知道 CULA 库中有一些并行的 SVD 函数,但是如果我有大量相对较小的矩阵要分解,应该采用什么策略?例如,我有 n
个维度为 d
的矩阵,n
很大,d
很小.如何并行化这个过程?谁能给我一个提示?
I'm new to parallel programming using GPU so I apologize if the question is broad or vague. I'm aware there is some parallel SVD function in the CULA library, but what should be the strategy if I have a large number of relatively small matrices to factorize? For example I have n
matrices with dimension d
, n
is large and d
is small. How to parallelize this process? Could anyone give me a hint?
推荐答案
我之前的回答现在已经过时了.截至 2015 年 2 月,CUDA 7(目前为候选版本)在其 cuSOLVER 库中提供完整的 SVD 功能.下面,我提供了一个使用 CUDA cuSOLVER 生成奇异值分解的示例.
My previous answer is now out-of-date. As of February 2015, CUDA 7 (currently in release candidate version) offers full SVD capabilities in its cuSOLVER library. Below, I'm providing an example of generating the singular value decomposition using CUDA cuSOLVER.
关于您提出的具体问题(计算几个小矩阵的 SVD),您应该使用流来调整我在下面提供的示例.要将流与您可以使用的每个任务相关联
Concerning the specific issue you are rising (calculating the SVD of several matrices of small size), you should adapt the example I'm providing below by using streams. To associate a stream to each task you can use
cudaStreamCreate()
和
cusolverDnSetStream()
kernel.cu
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include<iostream>
#include<iomanip>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<math.h>
#include <cusolverDn.h>
#include <cuda_runtime_api.h>
#include "Utilities.cuh"
/********/
/* MAIN */
/********/
int main(){
// --- gesvd only supports Nrows >= Ncols
// --- column major memory ordering
const int Nrows = 7;
const int Ncols = 5;
// --- cuSOLVE input/output parameters/arrays
int work_size = 0;
int *devInfo; gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
// --- CUDA solver initialization
cusolverDnHandle_t solver_handle;
cusolverDnCreate(&solver_handle);
// --- Setting the host, Nrows x Ncols matrix
double *h_A = (double *)malloc(Nrows * Ncols * sizeof(double));
for(int j = 0; j < Nrows; j++)
for(int i = 0; i < Ncols; i++)
h_A[j + i*Nrows] = (i + j*j) * sqrt((double)(i + j));
// --- Setting the device matrix and moving the host matrix to the device
double *d_A; gpuErrchk(cudaMalloc(&d_A, Nrows * Ncols * sizeof(double)));
gpuErrchk(cudaMemcpy(d_A, h_A, Nrows * Ncols * sizeof(double), cudaMemcpyHostToDevice));
// --- host side SVD results space
double *h_U = (double *)malloc(Nrows * Nrows * sizeof(double));
double *h_V = (double *)malloc(Ncols * Ncols * sizeof(double));
double *h_S = (double *)malloc(min(Nrows, Ncols) * sizeof(double));
// --- device side SVD workspace and matrices
double *d_U; gpuErrchk(cudaMalloc(&d_U, Nrows * Nrows * sizeof(double)));
double *d_V; gpuErrchk(cudaMalloc(&d_V, Ncols * Ncols * sizeof(double)));
double *d_S; gpuErrchk(cudaMalloc(&d_S, min(Nrows, Ncols) * sizeof(double)));
// --- CUDA SVD initialization
cusolveSafeCall(cusolverDnDgesvd_bufferSize(solver_handle, Nrows, Ncols, &work_size));
double *work; gpuErrchk(cudaMalloc(&work, work_size * sizeof(double)));
// --- CUDA SVD execution
cusolveSafeCall(cusolverDnDgesvd(solver_handle, 'A', 'A', Nrows, Ncols, d_A, Nrows, d_S, d_U, Nrows, d_V, Ncols, work, work_size, NULL, devInfo));
int devInfo_h = 0; gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
if (devInfo_h != 0) std::cout << "Unsuccessful SVD execution
";
// --- Moving the results from device to host
gpuErrchk(cudaMemcpy(h_S, d_S, min(Nrows, Ncols) * sizeof(double), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_U, d_U, Nrows * Nrows * sizeof(double), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_V, d_V, Ncols * Ncols * sizeof(double), cudaMemcpyDeviceToHost));
std::cout << "Singular values
";
for(int i = 0; i < min(Nrows, Ncols); i++)
std::cout << "d_S["<<i<<"] = " << std::setprecision(15) << h_S[i] << std::endl;
std::cout << "
Left singular vectors - For y = A * x, the columns of U span the space of y
";
for(int j = 0; j < Nrows; j++) {
printf("
");
for(int i = 0; i < Nrows; i++)
printf("U[%i,%i]=%f
",i,j,h_U[j*Nrows + i]);
}
std::cout << "
Right singular vectors - For y = A * x, the columns of V span the space of x
";
for(int i = 0; i < Ncols; i++) {
printf("
");
for(int j = 0; j < Ncols; j++)
printf("V[%i,%i]=%f
",i,j,h_V[j*Ncols + i]);
}
cusolverDnDestroy(solver_handle);
return 0;
}
Utilities.cuh
#ifndef UTILITIES_CUH
#define UTILITIES_CUH
extern "C" int iDivUp(int, int);
extern "C" void gpuErrchk(cudaError_t);
extern "C" void cusolveSafeCall(cusolverStatus_t);
#endif
Utilities.cu
#include <stdio.h>
#include <assert.h>
#include "cuda_runtime.h"
#include <cuda.h>
#include <cusolverDn.h>
/*******************/
/* iDivUp FUNCTION */
/*******************/
extern "C" int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
// --- Credit to http://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d
", cudaGetErrorString(code), file, line);
if (abort) { exit(code); }
}
}
extern "C" void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }
/**************************/
/* CUSOLVE ERROR CHECKING */
/**************************/
static const char *_cudaGetErrorEnum(cusolverStatus_t error)
{
switch (error)
{
case CUSOLVER_STATUS_SUCCESS:
return "CUSOLVER_SUCCESS";
case CUSOLVER_STATUS_NOT_INITIALIZED:
return "CUSOLVER_STATUS_NOT_INITIALIZED";
case CUSOLVER_STATUS_ALLOC_FAILED:
return "CUSOLVER_STATUS_ALLOC_FAILED";
case CUSOLVER_STATUS_INVALID_VALUE:
return "CUSOLVER_STATUS_INVALID_VALUE";
case CUSOLVER_STATUS_ARCH_MISMATCH:
return "CUSOLVER_STATUS_ARCH_MISMATCH";
case CUSOLVER_STATUS_EXECUTION_FAILED:
return "CUSOLVER_STATUS_EXECUTION_FAILED";
case CUSOLVER_STATUS_INTERNAL_ERROR:
return "CUSOLVER_STATUS_INTERNAL_ERROR";
case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
}
return "<unknown>";
}
inline void __cusolveSafeCall(cusolverStatus_t err, const char *file, const int line)
{
if(CUSOLVER_STATUS_SUCCESS != err) {
fprintf(stderr, "CUSOLVE error in file '%s', line %d
%s
error %d: %s
terminating!
",__FILE__, __LINE__,err,
_cudaGetErrorEnum(err));
cudaDeviceReset(); assert(0);
}
}
extern "C" void cusolveSafeCall(cusolverStatus_t err) { __cusolveSafeCall(err, __FILE__, __LINE__); }
这篇关于使用 CUDA 并行实现多个 SVD的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!