上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如:

 TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归-LMLPHP

 这里表示有两个输入,一个输出。

现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数。

 

   我们假设只有一个输入、一个输出,神经网络模型结构类似上图,其中蓝色的路径仍为线性模型,红色路径为阶跃函数,是非线性模型。

 以上模型只有三个神经元,设输入为x,隐藏层为h,激活函数输出为a,最终输出为y,整个数据计算流情况如下:

TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归-LMLPHP

TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归-LMLPHP

   

  以上共有6+3+1个变量,整个训练的过程就是要解出这些变量。官方教程内有自定义神经网络模型的求解代码,和解线性模型的流程一致,大致以下几个步骤:

1、默认所有k=1,b=0;

2、将x代入模型,求得pred_y,通过pred_y和y计算损失函数,在通过损失函数来计算梯度;

3、通过梯度调整k、b的值

4、重复上述2、3过程,直到损失函数足够小。

具体代码请参看官方示例代码。

我们这篇文章将采用Keras封装好的方法来进行神经网络的训练和应用。

整个程序包括:创建模型、训练模型和应用模型三个过程。

主线程代码:

        public void Run()
        {
            //1、创建模型
            Model model = BuildModel();
            model.compile(loss: keras.losses.MeanSquaredError(),
                optimizer: keras.optimizers.SGD(0.02f),
                metrics: new[] { "mae" });
            model.summary();

            //2、训练模型
            (NDArray train_x, NDArray train_y) = PrepareData(1000);
            model.fit(train_x, train_y, batch_size: 64, epochs: 100);

            //3、应用模型(消费)
            test(model);
        }
12-24 16:43