问题描述
我正在尝试通过 PyTorch 训练分类器.但是,当我为模型提供训练数据时,我遇到了训练问题.我在 y_pred = model(X_trainTensor)
上收到此错误:
I'm trying to train a classifier via PyTorch. However, I am experiencing problems with training when I feed the model with training data.I get this error on y_pred = model(X_trainTensor)
:
运行时错误:标量类型为 Float 的预期对象,但参数 #4 'mat1' 的标量类型为 Double
以下是我的代码的关键部分:
Here are key parts of my code:
# Hyper-parameters
D_in = 47 # there are 47 parameters I investigate
H = 33
D_out = 2 # output should be either 1 or 0
# Format and load the data
y = np.array( df['target'] )
X = np.array( df.drop(columns = ['target'], axis = 1) )
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8) # split training/test data
X_trainTensor = torch.from_numpy(X_train) # convert to tensors
y_trainTensor = torch.from_numpy(y_train)
X_testTensor = torch.from_numpy(X_test)
y_testTensor = torch.from_numpy(y_test)
# Define the model
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
nn.LogSoftmax(dim = 1)
)
# Define the loss function
loss_fn = torch.nn.NLLLoss()
for i in range(50):
y_pred = model(X_trainTensor)
loss = loss_fn(y_pred, y_trainTensor)
model.zero_grad()
loss.backward()
with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad
推荐答案
参考来自 this github issue.
当错误是 RuntimeError: Expected object of scalar type Float 但得到标量类型 Double 作为参数 #4 'mat1'
时,您需要使用 .float()
code> 函数,因为它说 预期的标量类型 Float 对象
.
When the error is RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #4 'mat1'
, you would need to use the .float()
function since it says Expected object of scalar type Float
.
因此,解决方案是将 y_pred = model(X_trainTensor)
更改为 y_pred = model(X_trainTensor.float())
.
Therefore, the solution is changing y_pred = model(X_trainTensor)
to y_pred = model(X_trainTensor.float())
.
同样,当您收到 loss = loss_fn(y_pred, y_trainTensor)
的另一个错误时,您需要 y_trainTensor.long()
因为错误消息说 Expected标量类型 Long 对象
.
Likewise, when you get another error for loss = loss_fn(y_pred, y_trainTensor)
, you need y_trainTensor.long()
since the error message says Expected object of scalar type Long
.
您也可以按照@Paddy 的建议执行 model.double()
.
You could also do model.double()
, as suggested by @Paddy.
这篇关于如何修复 RuntimeError“标量类型 Float 的预期对象,但参数为 Double 的标量类型"?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!