本文介绍了使用dplyr重新编码多列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个数据帧,在其中重新编码了几列,因此将999设置为NA

I had a dataframe where I recoded several columns so that 999 was set to NA

dfB <-dfA %>%
  mutate(adhere = if_else(adhere==999, as.numeric(NA), adhere)) %>%
  mutate(engage = if_else(engage==999, as.numeric(NA), engage)) %>%
  mutate(quality = if_else(quality==999, as.numeric(NA), quality)) %>%
  mutate(undrstnd = if_else(undrstnd==999, as.numeric(NA), undrstnd)) %>%
  mutate(sesspart = if_else(sesspart==999, as.numeric(NA), sesspart)) %>%
  mutate(attended = if_else(attended>=9, as.integer(NA), attended))

我想使用mutate_at()和一定范围的列和recode()代替if_else(),但是我对如何赋予它条件感到困惑.我认为基于某些mutate_all示例,类似999 = NA的东西-但我还需要NA来匹配.x的类型,但我不确定如何使它变得对类型敏感

I want to use mutate_at() and a range of columns and recode() instead of if_else(), but I am stuck on how to give it the condition. I think something like 999 = NA based on some mutate_all examples -- but I also need the NA to match the type of .x and I am unsure how to get it to be type sensitive

我尝试过:

y <- data.frame(y1=c(1,2,999,3,4), y2=c(1L, 2L, 999L, 3L, 4L), y3=c(T,T,F,F,T))
z <- y %>%
    mutate_at( vars(y1:y2), funs(recode(.,`999` = as.numeric(NA))))

但是我收到警告未替换为.x的NA的值不兼容.请详尽指定替换项或提供.default,并且我看到它用数字表示,而不是用整数y2表示"

But I get a warning "Unreplaced values treated as NA as .x is not compatible. Please specify replacements exhaustively or supply .default " and I can see that it worded for the numeric column, but not for the integer column y2"

> z
  y1 y2    y3
1  1 NA  TRUE
2  2 NA  TRUE
3 NA NA FALSE
4  3 NA FALSE
5  4 NA  TRUE

推荐答案

我在准确了解您要完成的工作时遇到了麻烦,所以请告诉我是否还不够.

I'm having trouble understanding exactly what you want to accomplish, so let me know if this isn't quite it.


library(dplyr)

y <- data.frame(y1=c(1,2,999,3,4), y2=c(1L, 2L, 999L, 3L, 4L), y3=c(T,T,F,F,T))

y

#>    y1  y2    y3
#> 1   1   1  TRUE
#> 2   2   2  TRUE
#> 3 999 999 FALSE
#> 4   3   3 FALSE
#> 5   4   4  TRUE

z <- y %>%
  mutate_at(vars(y1:y2), ~ifelse(. == 999, NA, .))

z

#>   y1 y2    y3
#> 1  1  1  TRUE
#> 2  2  2  TRUE
#> 3 NA NA FALSE
#> 4  3  3 FALSE
#> 5  4  4  TRUE

这篇关于使用dplyr重新编码多列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-24 11:55