本文介绍了按R中的数据子集进行计算的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我想为我的数据框的PERMNO列中的每个公司编号执行计算,其中的摘要可以在这里看到: >摘要(companydataRETS) PERMNO RET 最小。 :10000 Min。 :-0.971698 第一档:32716第一档:-0.011905 中位数:61735中位数:0.000000 平均值:56788平均值:0.000799 第三档:80280第三档:0.010989 最大。 :93436最大。 :19.000000 到目前为止,我的解决方案是创建一个包含所有可能公司编号的变量 compns< - companydataRETS [!duplicated(companydataRETS [,PERMNO]),PERMNO] rhos get.rho子集(companydataRETS [,RET],companydataRETS $ PERMNO == compns [i])) 我测试了我的数据的一个子集,它的一切工作。问题是我有7200万的观测数据,即使离开电脑一夜之间工作,仍然没有完成。 我是R中的新手,所以我想我的代码结构可以改进,并且有更好的(更快,更少计算密集)的方式来执行相同的任务也许使用apply或with,这两者我都不明白)。任何建议?解决方案正如 Joran ,我看了一下库 data.table 。对代码的修改是: $ p $ library $ data $ table $ companydataRETS< - data.table(companydataRETS) setkey(companydataRETS,PERMNO) rhos get.rho(companydataRETS [J(compns [i])] $ RET) 使用 subset ),并使用 data.table ,并使用变量 compns 仅包含数据集中28659家公司中的30家。以下是两个版本的 system.time()的输出:使用子集: 用户........系统.....已过去 43.925 ... 12.413 ...... 56.337 使用 data.table 使用者.......系统.....已过期 0.229 ..... 0.047 ....... 0.276 (由于某些原因,使用%对于原始代码,做%代替%dopar%使得它运行得更快。 system.time() code> subset 是一个使用%do%的函数,在这种情况下两者中速度较快。 ) 我已经离开了原来的代码,并且在5个小时后还没有完成,所以我放弃了。 $ b 编辑 data.table 还有一个更简单的方法,不需要使用 foreach ,这涉及到用 rhos I want to perform calculations for each company number in the column PERMNO of my data frame, the summary of which can be seen here:> summary(companydataRETS) PERMNO RET Min. :10000 Min. :-0.971698 1st Qu.:32716 1st Qu.:-0.011905 Median :61735 Median : 0.000000 Mean :56788 Mean : 0.000799 3rd Qu.:80280 3rd Qu.: 0.010989 Max. :93436 Max. :19.000000My solution so far was to create a variable with all possible company numberscompns <- companydataRETS[!duplicated(companydataRETS[,"PERMNO"]),"PERMNO"]And then use a foreach loop using parallel computing which calls my function get.rho() which in turn perform the desired calculationsrhos <- foreach (i=1:length(compns), .combine=rbind) %dopar% get.rho(subset(companydataRETS[,"RET"],companydataRETS$PERMNO == compns[i]))I tested it for a subset of my data and it all works. The problem is that I have 72 million observations, and even after leaving the computer working overnight, it still didn't finish.I am new in R, so I imagine my code structure can be improved upon and there is a better (quicker, less computationally intensive) way to perform this same task (perhaps using apply or with, both of which I don't understand). Any suggestions? 解决方案 As suggested by Joran, I looked into the library data.table. The modifications to the code arelibrary(data.table)companydataRETS <- data.table(companydataRETS)setkey(companydataRETS,PERMNO)rhos <- foreach (i=1:length(compns), .combine=rbind) %do% get.rho(companydataRETS[J(compns[i])]$RET)I ran the code as I originally had (using subset) and once using data.table, with the variable compns comprising of only 30 of the 28659 companies in the dataset. Here are the outputs of system.time() for the two versions:Using subset: user........ system..... elapsed 43.925 ... 12.413...... 56.337Using data.table user....... system..... elapsed 0.229..... 0.047....... 0.276(For some reason using %do% instead of %dopar% for the original code made it ran faster. The system.time() for subset is the one using %do%, the faster of the two in this case.)I had left the original code running overnight and it hadn't finished after 5 hours, so I gave up and killed it. With this small modification I had my results in less than 5 minutes (I think about 3 mins)!EDITThere is an even easier way to do it using data.table, without the use of foreach, which involves substituting the last line of the code above byrhos <- companydataRETS[ , get.rho(RET), by=PERMNO] 这篇关于按R中的数据子集进行计算的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
07-13 18:41