问题描述
我用 C ++
hypot()
和 Java
Math.hypot
。它们似乎都明显慢于 sqrt(a * a + b * b)
。这是因为更好的精度吗?什么方法计算斜线 hypot
函数使用?令人惊讶的是,我在文档中找不到任何性能低下的迹象。
I did some testing with C++
hypot()
and Java
Math.hypot
. They both seem to be significantly slower than sqrt(a*a + b*b)
. Is that because of a better precision? What method to calculate a hypotenuse hypot
function uses? Surprisingly I couldn't find any indication of poor performance in the documentation.
推荐答案
这不是一个简单的sqrt函数。您应该检查此链接以实施算法:
It's not a simple sqrt function. You should check this link for the implementation of the algorithm: http://www.koders.com/c/fid7D3C8841ADC384A5F8DE0D081C88331E3909BF3A.aspx
它有while循环以检查收敛
It has while loop to check for convergence
/* Slower but safer algorithm due to Moler and Morrison. Never
produces any intermediate result greater than roughly the
larger of X and Y. Should converge to machine-precision
accuracy in 3 iterations. */
double r = ratio*ratio, t, s, p = abig, q = asmall;
do {
t = 4. + r;
if (t == 4.)
break;
s = r / t;
p += 2. * s * p;
q *= s;
r = (q / p) * (q / p);
} while (1);
EDIT(从JM更新):
EDIT (Update from J.M):
是原始的Moler-Morrison论文,这里是一个很好的后续由于Dubrulle。
Here is the original Moler-Morrison paper, and here is a nice follow-up due to Dubrulle.
这篇关于为什么hypot()函数这么慢?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!