问题描述
这是我的代码:
cnn_input = Input(shape=(cnn_max_length,))
emb_output = Embedding(num_chars + 1, output_dim=32, input_length=cnn_max_length, trainable=True)(cnn_input)
output = TimeDistributed(Convolution1D(filters=128, kernel_size=4, activation='relu'))(emb_output)
我想训练一个字符级的CNN序列标签器,并且不断收到此错误:
I want to train a character-level CNN sequence labeler and I keep receiving this error:
Traceback (most recent call last):
File "word_lstm_char_cnn.py", line 24, in <module>
output = kl.TimeDistributed(kl.Convolution1D(filters=128, kernel_size=4, activation='relu'))(emb_output)
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/keras/engine/base_layer.py", line 457, in __call__
output = self.call(inputs, **kwargs)
es/keras/layers/wrappers.py", line 248, in call
y = self.layer.call(inputs, **kwargs)
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/keras/layers/convolutional.py", line 160, in call
dilation_rate=self.dilation_rate[0])
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 3526, in conv1d
data_format=tf_data_format)
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py", line 779, in convolution
data_format=data_format)
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py", line 828, in __init__
input_channels_dim = input_shape[num_spatial_dims + 1]
File "/home/user/anaconda3/envs/thesisenv/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 615, in __getitem__
return self._dims[key]
IndexError: list index out of range
输入应该是3D的.如果更改输入形状,则会收到此错误:
The input is 3D, as it should be. If I change the input shape I receive this error:
ValueError: Input 0 is incompatible with layer time_distributed_1: expected ndim=3, found ndim=4
推荐答案
推荐的解决方案:在这种情况下,无需使用TimeDistributed
.您可以使用以下代码来解决此问题:
Recommended solution:There is no need to use TimeDistributed
in this case. You can fix the issue with following piece of code:
output = Convolution1D(filters=128, kernel_size=4, activation='relu')(emb_output)
以防万一,如果您想使用TimeDistributed
,则可以执行以下操作:
Just in case, if you like to use TimeDistributed
you can do something like:
output = TimeDistributed(Dense(100,activation='relu'))(emb_output)
不推荐:根据文档:
TimeDistributed
的输入类似于batch_size * seq_len * emb_size
.当Conv1D
应用于每个序列时,它需要2个维,但只能找到一个.
The input to the TimeDistributed
is something like batch_size * seq_len * emb_size
. When Conv1D
apply to each sequence, it needs 2 dimensions but found only one.
您可以通过在序列中添加一维来解决此问题:
You can fix the problem by adding one dimension to your sequences:
TimeDistributed(Conv1D(100, 1))(keras.backend.reshape(emb, [-1, sequence_len, embeding_dim, 1]))
这篇关于Keras TimeDistributed Conv1D错误的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!