本文介绍了带有 TensorFlow 2.4+ 错误的 SHAP DeepExplainer的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试使用 DeepExplainer 计算 shap 值,但出现以下错误:
不再支持keras,请改用tf.keras
即使我使用的是 tf.keras?
KeyError 回溯(最近一次调用最后一次)在6 # ...或直接传递张量7 解释器 = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), 背景)8 shap_values = Explainer.shap_values(X_test[1:5])C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\__init__.py in shap_values(self, X, rating_outputs, output_rank_order, check_additivity)122 个被选为顶级".第124回C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\deep_tf.py in shap_values(self, X,ranked_outputs, output_rank_order, check_additivity)310 # 将属性分配给输出数组的右侧部分311 对于 l 范围内(len(X)):第 312 章313314 output_phis.append(phis[0]如果不是self.multi_input elsephis)C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)2798 如果 self.columns.nlevels > 1:2799 返回 self._getitem_multilevel(key)2800 索引器 = self.columns.get_loc(key)2801 如果 is_integer(索引器):2802 索引器 = [索引器]C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)2646 返回 self._engine.get_loc(key)2647 除了 KeyError:第2648章2649 indexer = self.get_indexer([key],method=method,tolerance=tolerance)2650 如果 indexer.ndim > 1 或 indexer.size > 1:pandas\_libs\index.pyx 在 pandas._libs.index.IndexEngine.get_loc()pandas\_libs\index.pyx 在 pandas._libs.index.IndexEngine.get_loc()pandas\_libs\hashtable_class_helper.pxi 在 pandas._libs.hashtable.PyObjectHashTable.get_item()pandas\_libs\hashtable_class_helper.pxi 在 pandas._libs.hashtable.PyObjectHashTable.get_item()密钥错误:0导入形状将 numpy 导入为 np将熊猫导入为 pd将张量流导入为 tf将 tensorflow.keras.backend 导入为 K从 keras.utils 导入到_categorical从 sklearn.model_selection 导入 train_test_split从 tensorflow.python.keras.layers 导入密集从 tensorflow.python.keras 导入顺序从 tensorflow.keras 导入优化器# 将 JS 可视化代码打印到 notebookshap.initjs()X_train,X_test,Y_train,Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)Y_train = to_categorical(Y_train, num_classes=3)Y_test = to_categorical(Y_test, num_classes=3)# 定义基线模型模型 = tf.keras.models.Sequential()model.add(tf.keras.layers.Dense(8, input_dim=len(X_train.columns), activation=relu"))model.add(tf.keras.layers.Dense(3, activation=softmax"))模型摘要()# 编译模型model.compile(optimizer='adam', loss="categorical_crossentropy", metrics=['accuracy'])hist = model.fit(X_train, Y_train, batch_size=5,epochs=200,verbose=0)# 选择一组背景示例来接受期望背景 = X_train.iloc[np.random.choice(X_train.shape[0], 100, replace=False)]# 解释模型的预测#explainer = shap.DeepExplainer(模型,背景)# ...或直接传递张量解释器 = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), 背景)shap_values = Explainer.shap_values(X_test[1:5])
解决方案
TL;DR
- 在 TF 2.4+ 的顶部添加
tf.compat.v1.disable_v2_behavior()
- 在 numpy 数组上计算 shap 值,而不是在 df 上
完全可重现的示例:
导入形状将 numpy 导入为 np将熊猫导入为 pd从 sklearn.model_selection 导入 train_test_split将张量流导入为 tftf.compat.v1.disable_v2_behavior() # <-- 这里!将 tensorflow.keras.backend 导入为 K从 tensorflow.keras.utils 导入到_categorical从 tensorflow.python.keras.layers 导入密集从 tensorflow.python.keras 导入顺序从 tensorflow.keras 导入优化器打印(SHAP版本是:",shap.__version__)print("Tensorflow 版本为:", tf.__version__)X_train, X_test, Y_train, Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)Y_train = to_categorical(Y_train, num_classes=3)Y_test = to_categorical(Y_test, num_classes=3)# 定义基线模型模型 = tf.keras.models.Sequential()model.add(tf.keras.layers.Dense(8, input_dim=len(X_train.columns), activation=relu"))model.add(tf.keras.layers.Dense(3, activation=softmax"))#model.summary()# 编译模型model.compile(优化器=adam",损失=categorical_crossentropy",metrics=[accuracy"])hist = model.fit(X_train,Y_train,batch_size=5,epochs=200,verbose=0)# 选择一组背景示例来接受期望背景 = X_train.iloc[np.random.choice(X_train.shape[0], 100, replace=False)]解释器 = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), 背景)shap_values = Explainer.shap_values(X_test[:3].values) # <-- 这里!# 将 JS 可视化代码打印到 notebookshap.initjs()shap.force_plot(解释器.expected_value[0], shap_values[0][0], feature_names=X_train.columns)
SHAP 版本为:0.39.0Tensorflow 版本为:2.5.0
I'm trying to compute shap values using DeepExplainer, but I get the following error:
Even though i'm using tf.keras?
KeyError Traceback (most recent call last) in 6 # ...or pass tensors directly 7 explainer = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), background) 8 shap_values = explainer.shap_values(X_test[1:5]) C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\__init__.py in shap_values(self, X, ranked_outputs, output_rank_order, check_additivity) 122 were chosen as "top". 124 return self.explainer.shap_values(X, ranked_outputs, output_rank_order, check_additivity=check_additivity) C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\deep_tf.py in shap_values(self, X, ranked_outputs, output_rank_order, check_additivity) 310 # assign the attributions to the right part of the output arrays 311 for l in range(len(X)): 312 phis[l][j] = (sample_phis[l][bg_data[l].shape[0]:] * (X[l][j] - bg_data[l])).mean(0) 313 314 output_phis.append(phis[0] if not self.multi_input else phis) C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key) 2798 if self.columns.nlevels > 1: 2799 return self._getitem_multilevel(key) 2800 indexer = self.columns.get_loc(key) 2801 if is_integer(indexer): 2802 indexer = [indexer] C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 2646 return self._engine.get_loc(key) 2647 except KeyError: 2648 return self._engine.get_loc(self._maybe_cast_indexer(key)) 2649 indexer = self.get_indexer([key], method=method, tolerance=tolerance) 2650 if indexer.ndim > 1 or indexer.size > 1: pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc() pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc() pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 0
import shap
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras.backend as K
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras import Sequential
from tensorflow.keras import optimizers
# print the JS visualization code to the notebook
shap.initjs()
X_train,X_test,Y_train,Y_test = train_test_split(*shap.datasets.iris(), test_size=0.2, random_state=0)
Y_train = to_categorical(Y_train, num_classes=3)
Y_test = to_categorical(Y_test, num_classes=3)
# Define baseline model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(8, input_dim=len(X_train.columns), activation="relu"))
model.add(tf.keras.layers.Dense(3, activation="softmax"))
model.summary()
# compile the model
model.compile(optimizer='adam', loss="categorical_crossentropy", metrics=['accuracy'])
hist = model.fit(X_train, Y_train, batch_size=5,epochs=200, verbose=0)
# select a set of background examples to take an expectation over
background = X_train.iloc[np.random.choice(X_train.shape[0], 100, replace=False)]
# Explain predictions of the model
#explainer = shap.DeepExplainer(model, background)
# ...or pass tensors directly
explainer = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), background)
shap_values = explainer.shap_values(X_test[1:5])
解决方案
TL;DR
Full reproducible example:
import shap
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
tf.compat.v1.disable_v2_behavior() # <-- HERE !
import tensorflow.keras.backend as K
from tensorflow.keras.utils import to_categorical
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras import Sequential
from tensorflow.keras import optimizers
print("SHAP version is:", shap.__version__)
print("Tensorflow version is:", tf.__version__)
X_train, X_test, Y_train, Y_test = train_test_split(
*shap.datasets.iris(), test_size=0.2, random_state=0
)
Y_train = to_categorical(Y_train, num_classes=3)
Y_test = to_categorical(Y_test, num_classes=3)
# Define baseline model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(8, input_dim=len(X_train.columns), activation="relu"))
model.add(tf.keras.layers.Dense(3, activation="softmax"))
# model.summary()
# compile the model
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
hist = model.fit(X_train, Y_train, batch_size=5, epochs=200, verbose=0)
# select a set of background examples to take an expectation over
background = X_train.iloc[np.random.choice(X_train.shape[0], 100, replace=False)]
explainer = shap.DeepExplainer(
(model.layers[0].input, model.layers[-1].output), background
)
shap_values = explainer.shap_values(X_test[:3].values) # <-- HERE !
# print the JS visualization code to the notebook
shap.initjs()
shap.force_plot(
explainer.expected_value[0], shap_values[0][0], feature_names=X_train.columns
)
SHAP version is: 0.39.0
Tensorflow version is: 2.5.0
这篇关于带有 TensorFlow 2.4+ 错误的 SHAP DeepExplainer的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!