本文介绍了Keras ImageDataGenerator:随机变换的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我对通过随机图像变换来扩充数据集感兴趣.我正在使用Keras ImageDataGenerator ,在尝试应用时遇到以下错误 random_transform
转换为单个图像:
I'm interested in augmenting my dataset with random image transformations. I'm using Keras ImageDataGenerator, and I'm getting the following error when trying to apply random_transform
to a single image:
--> x = apply_transform(x, transform matrix, img_channel_axis, fill_mode, cval)
>>> RuntimeError: affine matrix has wrong number of rows.
我在这里.但是,我不确定如何调试运行时错误.下面是我的代码:
from keras.preprocessing.image import img_to_array, load_img
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.inception_v3 import preprocess_input
image_path = './figures/zebra.jpg'
#data augmentation
train_datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
print "\nloading image..."
image = load_img(image_path, target_size=(299, 299))
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # 1 x input_shape
image = preprocess_input(image)
train_datagen.fit(image)
image = train_datagen.random_transform(image)
调用 random_transform
时,错误发生在最后一行.
The error occurs at the last line when calling random_transform
.
推荐答案
def random_transform(self, x, seed=None):
"""Randomly augment a single image tensor.
# Arguments
x: 3D tensor, single image.
seed: random seed.
# Returns
A randomly transformed version of the input (same shape).
"""
So you'll need to call it before np.expand_dims
.
这篇关于Keras ImageDataGenerator:随机变换的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!