本文介绍了Keras:可视化ImageDataGenerator输出的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想看看ImageDataGenerator对我的网络产生了什么.
I would like to see what my ImageDataGenerator yields to my network.
修改:
删除了channel_shift_range,不小心将其留在了代码中
removed the channel_shift_range, accidently left it in the code
genNorm = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,
height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True)
获取批次
batches = genNorm.flow_from_directory(path+'train', target_size=(224,224),
class_mode='categorical', batch_size=64)
x_batch, y_batch = next(batches)
绘制图像
for i in range (0,32):
image = x_batch[i]
plt.imshow(image.transpose(2,1,0))
plt.show()
结果
这是正常现象吗,还是我在这里做错了什么?
Is this normal or am I doing something wrong here?
推荐答案
尝试一下;更改生成器,如下所示:
Try this; change the generator as follow:
import numpy as np
def my_preprocessing_func(img):
image = np.array(img)
return image / 255
genNorm = ImageDataGenerator(rotation_range=10, width_shift_range=0.1,
height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True,
preprocessing_function=my_preprocessing_func)
对我有用,
布鲁诺
这篇关于Keras:可视化ImageDataGenerator输出的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!