本文介绍了如何在Tensorflow中制作2D高斯滤波器?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何使用高斯内核在Tensorflow中实现2D低通(也称为模糊)滤波器?
How can I implement a 2D low pass (also known as blurring) filter in Tensorflow using a gaussian kernel?
推荐答案
首先定义标准化的2D高斯核:
First define a normalized 2D gaussian kernel:
def gaussian_kernel(size: int,
mean: float,
std: float,
):
"""Makes 2D gaussian Kernel for convolution."""
d = tf.distributions.Normal(mean, std)
vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32))
gauss_kernel = tf.einsum('i,j->ij',
vals,
vals)
return gauss_kernel / tf.reduce_sum(gauss_kernel)
接下来,使用tf.nn.conv2d将该内核与图像进行卷积:
Next, use tf.nn.conv2d to convolve this kernel with an image:
# Make Gaussian Kernel with desired specs.
gauss_kernel = gaussian_kernel( ... )
# Expand dimensions of `gauss_kernel` for `tf.nn.conv2d` signature.
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]
# Convolve.
tf.nn.conv2d(image, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
这篇关于如何在Tensorflow中制作2D高斯滤波器?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!