问题描述
我目前正在使用这样定义的conv2D layer
训练convolutional neural network
:
I'm currently training a convolutional neural network
using a conv2D layer
defined like this:
conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='SAME', activation='relu')(inputs)
我的理解是,默认的kernel_initializer为glorot_uniform
,其默认种子为'none':
My understanding is that the default kernel_initializer is glorot_uniform
which has a default seed of 'none':
tf.keras.layers.Conv2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs
)
tf.compat.v1.keras.initializers.glorot_uniform(seed=None, dtype=tf.dtypes.float32)
我正在尝试生成可复制的代码,并且已经按照:
I'm trying to produce reproducible code and have already set random seeds as per this StackOverflow post:
seed_num = 1
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(seed_num)
rn.seed(seed_num)
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
tf.random.set_seed(seed_num)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
K.set_session(sess)
conv2D layer
中glorot_uniform
使用的tf.random.set_seed
种子编号吗?如果没有,那么在定义conv2D layer
时将如何定义该种子?
Is the tf.random.set_seed
seed number used by glorot_uniform
within a conv2D layer
? If not, how would that seed be defined when defining the conv2D layer
?
推荐答案
感谢扎比尔·纳粹 ,答案是是".设置tf.random.set_seed()
还会设置Conv2D
层的glorot_uniform
种子.
Thanks to Zabir Al Nazi, the answer is "yes". Setting tf.random.set_seed()
also sets the Conv2D
layer's glorot_uniform
seed.
这篇关于在keras中使用conv2D层时,在tf.random.set_seed中设置种子是否还会设置glorot_uniform kernel_initializer使用的种子吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!