本文介绍了如何在 R 中使用季节性假人运行指数 nls?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我在用 R 中的季节性假人运行 nls 回归时遇到问题.我可以在没有季节性假人的情况下做到这一点,但不能.这是我目前所拥有的:
year=floor(time(lsts))>月=轮(时间(lsts)-年,4)>月.f=因子(月)>假人=model.matrix(~month.f)hotdogNLS
总结(hotdogNLS)
公式:lsts ~ beta1/(1 + exp(beta2 + beta3 * t))参数:估计标准误差 t 值 Pr(>|t|)beta1 2.030e+03 5.874e+01 34.55 <2e-16 ***beta2 1.146e+00 5.267e-02 21.76
我如何包含季节性假人?谢谢!
解决方案
我不认为在 nls
中实现了傻瓜,因为事实上它们在 glm
中nls
的公式"是一个真正的数学公式,与 glm
不同.
您仍然可以指定是否必须为每个类别的假人单独评估参数:
数据(汽车)# 定义假人汽车$虚拟 <- as.factor(LETTERS[1:5])# 编码为 0/1 虚拟,每个虚拟级别有一列汽车$A<- as.numeric(cars$dummy=="A")汽车$B<- as.numeric(cars$dummy=="B")汽车$C
I'm having trouble with running an nls regression with seasonal dummies in R.I'm able to do it without the seasonal dummies, but not with.This is what I have so far:
year=floor(time(lsts))
> month=round(time(lsts)-year,4)
> month.f=factor(month)
> dummies=model.matrix(~month.f)
hotdogNLS<-nls(lsts~beta1/(1+exp(beta2+beta3*t)),start=list(beta1=2500,beta2=0.5,beta3=-0.5),trace=F)
Formula: lsts ~ beta1/(1 + exp(beta2 + beta3 * t))
Parameters:
Estimate Std. Error t value Pr(>|t|)
beta1 2.030e+03 5.874e+01 34.55 <2e-16 ***
beta2 1.146e+00 5.267e-02 21.76 <2e-16 ***
beta3 -1.116e-02 7.668e-04 -14.56 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 192.3 on 333 degrees of freedom
Number of iterations to convergence: 8
Achieved convergence tolerance: 2.054e-06
How do I include seasonal dummies?Thanks!
解决方案
I don't think dummies are implemented for nls
like they are in glm
due to the fact that "formula" for nls
is a real mathematical formula unlike for glm
.
You can nevertheless specify if a parameter must be assessed separately for each class of a dummy:
data(cars)
# define the dummy
cars$dummy <- as.factor(LETTERS[1:5])
# code as 0/1 the dummy with a column per dummy level
cars$A<- as.numeric(cars$dummy=="A")
cars$B<- as.numeric(cars$dummy=="B")
cars$C<- as.numeric(cars$dummy=="C")
cars$D<- as.numeric(cars$dummy=="D")
cars$E<- as.numeric(cars$dummy=="E")
# precise in the formula where the dummy level should play out
# here in the intercept:
model <- nls(dist~beta1*speed^beta2+beta3*A+beta4*B+beta5*C+beta6*D+beta7*E,data=cars)
model
Nonlinear regression model
model: dist ~ beta1 * speed^beta2 + beta3 * A + beta4 * B + beta5 * C + beta6 * D + beta7 * E
data: cars
beta1 beta2 beta3 beta4 beta5 beta6 beta7
0.2069 1.8580 2.8266 5.3973 13.0002 9.3539 2.5361
residual sum-of-squares: 10040
Number of iterations to convergence: 8
Achieved convergence tolerance: 4.924e-06
这篇关于如何在 R 中使用季节性假人运行指数 nls?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!