本文介绍了使用 sklearn 进行多项式回归的最简单方法?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一些不适合线性回归的数据:
实际上应该完全"拟合二次函数:
P = R*I**2
我正在做这个:
model = sklearn.linear_model.LinearRegression()X = alambres[alambre]['mediciones'][x].reshape(-1, 1)Y = alambres[alambre]['mediciones'][y].reshape(-1, 1)模型拟合(X,Y)
是否有机会通过执行以下操作来解决它:
model.fit([X,X**2],Y)
解决方案
你可以使用 numpy 的
I have some data that doesn't fit a linear regression:
In fact should fit a quadratic function 'exactly':
P = R*I**2
I'm making this:
model = sklearn.linear_model.LinearRegression()
X = alambres[alambre]['mediciones'][x].reshape(-1, 1)
Y = alambres[alambre]['mediciones'][y].reshape(-1, 1)
model.fit(X,Y)
Is there any chance to solve it by doing something like:
model.fit([X,X**2],Y)
解决方案
You can use numpy's polyfit.
import numpy as np
from matplotlib import pyplot as plt
X = np.linspace(0, 100, 50)
Y = 23.24 + 2.2*X + 0.24*(X**2) + 10*np.random.randn(50) #added some noise
coefs = np.polyfit(X, Y, 2)
print(coefs)
p = np.poly1d(coefs)
plt.plot(X, Y, "bo", markersize= 2)
plt.plot(X, p(X), "r-") #p(X) evaluates the polynomial at X
plt.show()
Out:
[ 0.24052058 2.1426103 25.59437789]
这篇关于使用 sklearn 进行多项式回归的最简单方法?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!