本文介绍了纸浆:lpDot()有什么作用,如何使用的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试通过 lpDot()
生成方程,例如
I am trying to generate an equation via lpDot()
, Such as
PulpVar = [x1,x2]
Constants = [5,6]
然后将点积做为:
model += lpDot(PulpVar, Constants)
据我所知,这应该生成一个等式为 x1 * 5 + x2 * 6
Form what I understand this should generate an equation as x1*5+x2*6
但是我得到的是 lpAffineExpression
作为输出,因此生成的lp文件为空
but I am getting lpAffineExpression
as output and the lp file so generated is empty
推荐答案
因此,如果您使用常量,则lpDot()将返回点积,即< class'pulp.pulp.LpAffineExpression'>
:
So, if you use with constants, lpDot() will return dot product, that is a <class 'pulp.pulp.LpAffineExpression'>
:
import pulp
x1 = [1]
x2 = [2]
X = [x1,x2]
Constants = [5, 6]
model = pulp.lpDot(X, Constants)
print(model, type(model))
输出:
17 <class 'pulp.pulp.LpAffineExpression'>
如果您对方程式 x1 * 5 + x2 * 6
进行量化,则应使用 LpVariable
,如下所示:
If you quant the equation x1*5+x2*6
you should use LpVariable
like this:
import pulp
PulpVar1 = pulp.LpVariable('x1')
PulpVar2 = pulp.LpVariable('x2')
Constants = [13, 2]
model = pulp.lpDot([PulpVar1, PulpVar2], Constants)
print(model, type(model))
输出:
5*x1 + 6*x2 <class 'pulp.pulp.LpAffineExpression'>
这篇关于纸浆:lpDot()有什么作用,如何使用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!