问题描述
仍在玩CVXPY.这次我收到一个有趣的错误.让我们看看这个最小的代码
Still playing with CVXPY. This time I get an interesting error. Let us look at this minimal code
import cvxpy as cp
import numpy as np
A = np.random.normal(0, 1, (64,6))
b = np.random.normal(0, 1, (64,1))
theta = cp.Variable(shape = (6,1))
prob = cp.Problem(
cp.Minimize(cp.max(A*theta -b) <= 5),
[-10 <= theta, theta <= 10])
编译后,出现以下错误:
Once compiled, I get the following error:
〜\ Anaconda3 \ lib \ site-packages \ cvxpy \ interface \ numpy_interface \ ndarray_interface.py in const_to_matrix(self,value,convert_scalars) 48返回结果 其他49个: ---> 50返回result.astype(numpy.float64) 51 52#返回一个单位矩阵.
~\Anaconda3\lib\site-packages\cvxpy\interface\numpy_interface\ndarray_interface.py in const_to_matrix(self, value, convert_scalars) 48 return result 49 else: ---> 50 return result.astype(numpy.float64) 51 52 # Return an identity matrix.
TypeError:float()参数必须是字符串或数字,而不是'Inequality'
TypeError: float() argument must be a string or a number, not 'Inequality'
推荐答案
我不知道您想精确建模什么,但是这里有些有效:
I don't know what you want to model exactly, but here something which works:
import cvxpy as cp
import numpy as np
A = np.random.normal(0, 1, (64,6))
b = np.random.normal(0, 1, (64,1))
theta = cp.Variable(shape = (6,1))
prob = cp.Problem(
cp.Minimize(cp.sum(theta)), # what do you want to minimize?
[
cp.max(A*theta -b) <= 5,
-10 <= theta,
theta <= 10
]
)
有效并且应该显示问题.
works and should show the problem.
我希望使用更干净的隐含形式,例如:
I would prefer a more clean impl like:
import cvxpy as cp
import numpy as np
A = np.random.normal(0, 1, (64,6))
b = np.random.normal(0, 1, (64,1))
theta = cp.Variable(shape = (6,1))
obj = cp.Minimize(cp.sum(theta)) # what do you want to minimize?
# feasibility-problem? -> use hardcoded constant: cp.Minimize(0)
constraints = [
cp.max(A*theta -b) <= 5,
-10 <= theta,
theta <= 10
]
prob = cp.Problem(obj, constraints)
原因:更容易准确地了解正在发生的事情.
The reason: it's easier to read out what's happening exactly.
您的问题:您的目标受到约束,这是不可能的.
Your problem: your objective has a constraint, which is impossible.
import cvxpy as cp
import numpy as np
A = np.random.normal(0, 1, (64,6))
b = np.random.normal(0, 1, (64,1))
theta = cp.Variable(shape = (6,1))
prob = cp.Problem(
cp.Minimize(cp.max(A*theta -b) <= 5), # first argument = objective
# -> minimize (constraint) : impossible!
[-10 <= theta, theta <= 10]) # second argument = constraints
# -> box-constraints
简而言之:
- 您想要以最小化功能
- 您要做使不平等最小化
- you want to minimize a function
- you do minimize an inequality
编辑
obj = cp.Minimize(cp.max(cp.abs(A*theta-b)))
小支票:
print((A*theta-b).shape)
(64, 1)
print((cp.abs(A*theta-b)).shape)
(64, 1)
元素级Abs:好
最后的外部max
产生单个值,否则cp.Minimize
将不接受它.好
The final outer max
results in a single value, or else cp.Minimize
won't accept it. good
编辑,或者让我们让cvxpy变得更快乐:
EDIT Or let's make cvxpy and us more happy:
obj = cp.Minimize(cp.norm(A*theta-b, "inf"))
这篇关于CVXPY中的TypeError:float()参数必须是字符串或数字,而不是'Inequality'的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!