本文介绍了NLineInputFormat 在 Spark 中不起作用的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想要的基本上是让数据的每个元素由 10 行组成.但是,对于下面的代码,每个元素仍然是一行.我在这里做错了什么?

What I want is basically to have each element of data consist of 10 lines. However, with the following code, each element is still one line. What mistake am I doing here?

val conf = new SparkConf().setAppName("MyApp")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.registerKryoClasses(Array[Class[_]](classOf[NLineInputFormat], classOf[LongWritable],
 classOf[Text]))
val sc = new SparkContext(conf)

val c = new Configuration(sc.hadoopConfiguration)
c.set("lineinputformat.linespermap", 10);
val data = sc.newAPIHadoopFile(fname, classOf[NLineInputFormat], classOf[LongWritable],
 classOf[Text], c)

推荐答案

NLineInputFormat by design just 不执行您期望的操作:

NLineInputFormat by design just doesn't perform operation you expect it to:

NLineInputFormat 将 N 行输入拆分为一个拆分.(...) 分割输入文件,这样默认情况下,一行作为值提供给一个 map 任务.

如您所见,它修改了拆分(Spark 命名法中的分区)的计算方式,而不是记录的确定方式.

As you can see it modifies how splits (partitions in the Spark nomenclature) are computed, not how records are determined.

如果描述不清楚,我们可以用下面的例子来说明:

If description is not clear we can illustrate that with a following example:

def nline(n: Int, path: String) = {
  val sc = SparkContext.getOrCreate
  val conf = new Configuration(sc.hadoopConfiguration)
  conf.setInt("mapreduce.input.lineinputformat.linespermap", n);

  sc.newAPIHadoopFile(path,
    classOf[NLineInputFormat], classOf[LongWritable], classOf[Text], conf
  )
}

require(nline(1, "README.md").glom.map(_.size).first == 1)
require(nline(2, "README.md").glom.map(_.size).first == 2)
require(nline(3, "README.md").glom.map(_.size).first == 3)

如上图所示,每个分区(可能不包括最后一个)正好包含 n 行.

As show above each partition (possibly excluding the last one) contains exactly n lines.

虽然您可以尝试对其进行改造以适应您的情况,但不建议将 linespermap 参数用于较小的值.

While you can try to retrofit this to fit your case it won't be recommended for small values of the linespermap parameter.

这篇关于NLineInputFormat 在 Spark 中不起作用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-09 19:24