本文介绍了计算 r 中单词向量中特定字母的出现次数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试计算长单词向量中特定字母的数量.
I am trying to count number of particular letter in long vector of words.
例如:
我想计算以下向量中字母A"的数量.
I would like to count number of letter "A" in the following vector.
myvec <- c("A", "KILLS", "PASS", "JUMP", "BANANA", "AALU", "KPAL")
所以预期的输出是:
c(1,0,1,0, 3,2,1)
有什么想法吗?
推荐答案
另一种可能性:
myvec <- c("A", "KILLS", "PASS", "JUMP", "BANANA", "AALU", "KPAL")
sapply(gregexpr("A", myvec, fixed = TRUE), function(x) sum(x > -1))
## [1] 1 0 1 0 3 2 1
编辑这是在乞求一个基准:
library(stringr); library(stringi); library(microbenchmark); library(qdapDictionaries)
myvec <- toupper(GradyAugmented)
GREGEXPR <- function() sapply(gregexpr("A", myvec, fixed = TRUE), function(x) sum(x > -1))
GSUB <- function() nchar(gsub("[^A]", "", myvec))
STRSPLIT <- function() sapply(strsplit(myvec,""), function(x) sum(x=='A'))
STRINGR <- function() str_count(myvec, "A")
STRINGI <- function() stri_count(myvec, fixed="A")
VAPPLY_STRSPLIT <- function() vapply(strsplit(myvec,""), function(x) sum(x=='A'), integer(1))
(op <- microbenchmark(
GREGEXPR(),
GSUB(),
STRINGI(),
STRINGR(),
STRSPLIT(),
VAPPLY_STRSPLIT(),
times=50L))
## Unit: milliseconds
## expr min lq mean median uq max neval
## GREGEXPR() 477.278895 631.009023 688.845407 705.878827 745.73596 906.83006 50
## GSUB() 197.127403 202.313022 209.485179 205.538073 208.90271 270.19368 50
## STRINGI() 7.854174 8.354631 8.944488 8.663362 9.32927 11.19397 50
## STRINGR() 618.161777 679.103777 797.905086 787.554886 906.48192 1115.59032 50
## STRSPLIT() 244.721701 273.979330 331.281478 294.944321 348.07895 516.47833 50
## VAPPLY_STRSPLIT() 184.042451 206.049820 253.430502 219.107882 251.80117 595.02417 50
boxplot(op)
和stringi 大尾巴.vapply
+ strsplit
是一个很好的方法,就像简单的 gsub
方法一样.肯定会有有趣的结果.
And stringi whooping some major tail. The vapply
+ strsplit
was a nice approach as was the simple gsub
approach. Interesting results for sure.
这篇关于计算 r 中单词向量中特定字母的出现次数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!