问题描述
执行 cross_val_predict (请参见,v0.18)使用 k -fold方法,如下面的代码所示,计算每个折叠的精度并最终取平均值?
Does the cross_val_predict (see doc, v0.18) with k-fold method as shown in the code below calculate accuracy for each fold and average them finally or not?
cv = KFold(len(labels), n_folds=20) clf = SVC() ypred = cross_val_predict(clf, td, labels, cv=cv) accuracy = accuracy_score(labels, ypred) print accuracy
推荐答案
不,不是!
根据页面, cross_val_predict 不返回任何分数,仅返回基于此处描述的特定策略的标签:
According to cross validation doc page, cross_val_predict does not return any scores but only the labels based on a certain strategy which is described here:
因此,通过调用 accuracy_score(labels,ypred) ,您只是在计算由上述特定策略预测的标签的准确度得分,真实标签。再次在同一文档页面中指定:
And therefore by calling accuracy_score(labels, ypred) you are just calculating accuracy scores of labels predicted by aforementioned particular strategy compared to the true labels. This again is specified in the same documentation page:
predicted = cross_val_predict(clf, iris.data, iris.target, cv=10) metrics.accuracy_score(iris.target, predicted)
请注意,此计算结果可能与使用cross_val_score,因为元素以不同的方式分组到
中。
如果您需要不同倍数的准确性得分,应该尝试:
If you need accuracy scores of different folds you should try:
>>> scores = cross_val_score(clf, X, y, cv=cv) >>> scores array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])
,然后使用 scores.mean():
>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) Accuracy: 0.98 (+/- 0.03)
如何计算每折的Cohen kappa系数和混淆矩阵?
用于计算 Cohen Kappa系数和混淆矩阵,我假设您是指真实标签与每个标签之间的Kappa系数和混淆矩阵fold的预测标签:
How to calculate Cohen kappa coefficient and confusion matrix for each fold?
For calculating Cohen Kappa coefficient and confusion matrix I assumed you mean kappa coefficient and confusion matrix between true labels and each fold's predicted labels:
from sklearn.model_selection import KFold from sklearn.svm.classes import SVC from sklearn.metrics.classification import cohen_kappa_score from sklearn.metrics import confusion_matrix cv = KFold(len(labels), n_folds=20) clf = SVC() for train_index, test_index in cv.split(X): clf.fit(X[train_index], labels[train_index]) ypred = clf.predict(X[test_index]) kappa_score = cohen_kappa_score(labels[test_index], ypred) confusion_matrix = confusion_matrix(labels[test_index], ypred)
<$ c是什么$ c> cross_val_predict 返回值?
它使用KFold将数据拆分为 k 部分,然后进行 i = 1..k 迭代:
What does cross_val_predict return?
It uses KFold to split the data to k parts and then for i=1..k iterations:
- 获取第i个部分作为测试数据,所有其他部分作为训练数据
- 用训练数据训练模型(除<$ c之外的所有部分$ c>第ith )
- 然后通过使用经过训练的模型,预测第i 部分(测试数据)
- takes i'th part as the test data and all other parts as training data
- trains the model with training data (all parts except i'th)
- then by using this trained model, predicts labels for i'th part (test data)
在每次迭代中,第个部分数据得到预测。最后,cross_val_predict合并所有部分预测的标签,并将它们作为最终结果返回。
In each iteration, label of i'th part of data gets predicted. In the end cross_val_predict merges all partially predicted labels and returns them as the final result.
此代码逐步显示了此过程:
This code shows this process step by step:
X = np.array([[0], [1], [2], [3], [4], [5]]) labels = np.array(['a', 'a', 'a', 'b', 'b', 'b']) cv = KFold(len(labels), n_folds=3) clf = SVC() ypred_all = np.chararray((labels.shape)) i = 1 for train_index, test_index in cv.split(X): print("iteration", i, ":") print("train indices:", train_index) print("train data:", X[train_index]) print("test indices:", test_index) print("test data:", X[test_index]) clf.fit(X[train_index], labels[train_index]) ypred = clf.predict(X[test_index]) print("predicted labels for data of indices", test_index, "are:", ypred) ypred_all[test_index] = ypred print("merged predicted labels:", ypred_all) i = i+1 print("=====================================") y_cross_val_predict = cross_val_predict(clf, X, labels, cv=cv) print("predicted labels by cross_val_predict:", y_cross_val_predict)
结果是:
iteration 1 : train indices: [2 3 4 5] train data: [[2] [3] [4] [5]] test indices: [0 1] test data: [[0] [1]] predicted labels for data of indices [0 1] are: ['b' 'b'] merged predicted labels: ['b' 'b' '' '' '' ''] ===================================== iteration 2 : train indices: [0 1 4 5] train data: [[0] [1] [4] [5]] test indices: [2 3] test data: [[2] [3]] predicted labels for data of indices [2 3] are: ['a' 'b'] merged predicted labels: ['b' 'b' 'a' 'b' '' ''] ===================================== iteration 3 : train indices: [0 1 2 3] train data: [[0] [1] [2] [3]] test indices: [4 5] test data: [[4] [5]] predicted labels for data of indices [4 5] are: ['a' 'a'] merged predicted labels: ['b' 'b' 'a' 'b' 'a' 'a'] ===================================== predicted labels by cross_val_predict: ['b' 'b' 'a' 'b' 'a' 'a']
这篇关于scikit-learn cross_val_predict准确性得分如何计算?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!