本文介绍了如何在条形图上添加多个注释的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
除了计数之外,我想将百分比值添加到我的熊猫程序中.但是,我无法这样做.我的代码如下所示,到目前为止,我可以显示计数值.有人可以帮我在每个条形显示的计数值旁边/下方添加相对百分比值吗?
import matplotlib导入matplotlib.pyplot作为plt%matplotlib 内联plt.style.use('ggplot')将 seaborn 作为 sns 导入sns.set_style(白色")无花果= plt.figure()fig.set_figheight(5)fig.set_figwidth(10)ax = fig.add_subplot(111)计数 = [29227, 102492, 53269, 504028, 802994]y_ax =('A','B','C','D','E')y_tick = np.arange(len(y_ax))ax.barh(range(len(counts)), counts, align = "center", color = "tab:blue")ax.set_yticks(y_tick)ax.set_yticklabels(y_ax,size = 8)#用值注释条形图对于我在ax.patches中:ax.text(i.get_width()+.09, i.get_y()+.3, str(round((i.get_width()), 1)), fontsize=8)sns.despine()plt.show();
我的代码的输出如下所示.如何在显示的每个计数值旁边添加 % 值?
解决方案
使用 pandas
- 使用
pandas v1.2.4
进行测试
导入和加载数据
将熊猫作为pd导入导入matplotlib.pyplot作为plt# 从 OP 中的值创建数据框计数= [29227、102492、53269、504028、802994]df = pd.DataFrame(data=counts, columns=['counts'], index=['A','B','C','D','E'])# 添加百分比列df ['%'] = df.counts.div(df.counts.sum()).mul(100).round(2)# 显示(df)计数 %一个29227 1.96乙 102492 6.87C 53269 3.57D 504028 33.78E 802994 53.82
使用 3.4.2 版中的 matplotlib
绘图
- 使用
注释资源 - 来自
matplotlib v3.4.2
I would like to add percent values - in addition to counts - to my pandas barplot. However, I am not able to do so. My code is shown below and thus far I can get count values to display. Can somebody please help me add relative % values next to/below the count values displayed for each bar?
import matplotlib import matplotlib.pyplot as plt %matplotlib inline plt.style.use('ggplot') import seaborn as sns sns.set_style("white") fig = plt.figure() fig.set_figheight(5) fig.set_figwidth(10) ax = fig.add_subplot(111) counts = [29227, 102492, 53269, 504028, 802994] y_ax = ('A','B','C','D','E') y_tick = np.arange(len(y_ax)) ax.barh(range(len(counts)), counts, align = "center", color = "tab:blue") ax.set_yticks(y_tick) ax.set_yticklabels(y_ax, size = 8) #annotate bar plot with values for i in ax.patches: ax.text(i.get_width()+.09, i.get_y()+.3, str(round((i.get_width()), 1)), fontsize=8) sns.despine() plt.show();
The output of my code is shown below. How can one add % values next to each count value displayed?
解决方案With
pandas
- Tested with
pandas v1.2.4
Imports and Load Data
import pandas as pd import matplotlib.pyplot as plt # create the dataframe from values in the OP counts = [29227, 102492, 53269, 504028, 802994] df = pd.DataFrame(data=counts, columns=['counts'], index=['A','B','C','D','E']) # add a percent column df['%'] = df.counts.div(df.counts.sum()).mul(100).round(2) # display(df) counts % A 29227 1.96 B 102492 6.87 C 53269 3.57 D 504028 33.78 E 802994 53.82
Plot use
matplotlib
from version 3.4.2- Use
matplotlib.pyplot.bar_label
- See the matplotlib: Bar Label Demo page for additional formatting options.
- Tested with
pandas v1.2.4
, which is usingmatplotlib
as the plot engine. - Some formatting can be done with the
fmt
parameter, but more sophisticated formatting should be done with thelabels
parameter.
ax = df.plot(kind='barh', y='counts', figsize=(10, 5), legend=False, width=.75, title='This is the plot generated by all code examples in this answer') # customize the label to include the percent labels = [f' {v.get_width()}\n {df.iloc[i, 1]}%' for i, v in enumerate(ax.containers[0])] # set the bar label ax.bar_label(ax.containers[0], labels=labels, label_type='edge', size=13) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.show()
Annotation Resources - from
matplotlib v3.4.2
- Adding value labels on a matplotlib bar chart
- How to annotate each segment of a stacked bar chart
- Stacked Bar Chart with Centered Labels
- How to plot and annotate multiple data columns in a seaborn barplot
- How to annotate a seaborn barplot with the aggregated value
- stack bar plot in matplotlib and add label to each section
- How to plot and annotate a grouped bar chart
Plot use
matplotlib
before version 3.4.2# plot the dataframe ax = df.plot(kind='barh', y='counts', figsize=(10, 5), legend=False, width=.75) for i, y in enumerate(ax.patches): # get the percent label label_per = df.iloc[i, 1] # add the value label ax.text(y.get_width()+.09, y.get_y()+.3, str(round((y.get_width()), 1)), fontsize=10) # add the percent label here ax.text(y.get_width()+.09, y.get_y()+.1, str(f'{round((label_per), 2)}%'), fontsize=10) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.show()
Original Answer without
pandas
- Tested with
matplotlib v3.3.4
import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(10, 5)) counts = [29227, 102492, 53269, 504028, 802994] # calculate percents percents = [100*x/sum(counts) for x in counts] y_ax = ('A','B','C','D','E') y_tick = np.arange(len(y_ax)) ax.barh(range(len(counts)), counts, align = "center", color = "tab:blue") ax.set_yticks(y_tick) ax.set_yticklabels(y_ax, size = 8) #annotate bar plot with values for i, y in enumerate(ax.patches): label_per = percents[i] ax.text(y.get_width()+.09, y.get_y()+.3, str(round((y.get_width()), 1)), fontsize=10) # add the percent label here # ax.text(y.get_width()+.09, y.get_y()+.3, str(round((label_per), 2)), ha='right', va='center', fontsize=10) ax.text(y.get_width()+.09, y.get_y()+.1, str(f'{round((label_per), 2)}%'), fontsize=10) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.show()
- You can play with the positioning.
- Other formatting options mentioned by JohanC
- Print both parts of the text in one string with a
\n
in between to get a "natural" line spacing: str(f'{round((y.get_width()), 1)}\n{round((label_per), 2)}%')
ax.text(..., va='center')
to vertically center and be able to use a slightly larger font.ax.set_xlim(0, max(counts) * 1.18)
to get a bit more space for the text.- Start each line of text with a space to get a natural "horizontal" padding.
str(f' {round((label_per), 2)}%')
, note the space before{
.y.get_width()+.09
is extremely close toy.get_width()
when these values are in the tens of thousands.
这篇关于如何在条形图上添加多个注释的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!
- Tested with