问题描述
我正在尝试创建一个林地,其中R
plotly
我想用相应的p值对效果大小(点)及其误差线进行颜色编码.
I'm trying to create a forest plot with R
plotly
where I want to color code the effect sizes (points) and their error bars by their corresponding p-values.
以下是玩具数据:
set.seed(1)
factors <- paste0(1:25,":age")
effect.sizes <- rnorm(25,0,1)
effect.errors <- abs(rnorm(25,0,1))
p.values <- runif(25,0,1)
这就是我要尝试的:
library(dplyr)
plotly::plot_ly(type='scatter',mode="markers",y=~factors,x=~effect.sizes,color=~p.values,colors=grDevices::colorRamp(c("darkred","gray"))) %>%
plotly::add_trace(error_x=list(array=effect.errors),marker=list(color=~p.values,colors=grDevices::colorRamp(c("darkred","gray")))) %>%
plotly::colorbar(limits=c(0,1),len=0.4,title="P-Value") %>%
plotly::layout(xaxis=list(title="Effect Size",zeroline=T,showticklabels=T),yaxis=list(title="Factor",zeroline=F,showticklabels=T))
这给了我
除了:
- 我希望误差条的颜色类似于效果大小(通过相应的p值).
- 删除
colorbar
下的两个 - 在y轴上的标签顺序应为
factors
trace
图例- I'd like the error bars to be colored similar to the effect sizes (by the corresponding p-values).
- Remove the two
trace
legends below thecolorbar
- Have the order of the labels on the y-axis be that of
factors
有什么主意吗?
推荐答案
好的,我花了一些时间来锻炼我的plotly
技能.由于您的第一点是最难的,因此我将反向介绍您的观点.
Okay it took me a while to warm up my plotly
skills. Since your first point was the most difficult, I will go reversely through your points.
- 可以通过使用
categoryorder
操纵layout
来实现和yaxis
-列表中的categoryarray
(请参见motos回答此处)
- That can be achied by manipulating the
layout
usingcategoryorder
andcategoryarray
in theyaxis
-list (cf. motos answer here)
- 设置
showlegend=FALSE
- 那很棘手.我必须在第一行中移动第二行(误差线).向其添加了颜色矢量.将其放在
plot_ly
函数中.使用split
允许按组正确着色.在marker
-列表中添加了点的颜色.此外,我还通过colorRamp
>十六进制转换了p.values
-因为每个简单的解决方案都不适合我.
- That was tricky. I had to move your second line (the error bars) in the first. Added a color vector to it. Put it in the
plot_ly
-function. Usedsplit
to allow the correct coloring by group. Added the color for the points in amarker
-list. In additon I converted thep.values
via thecolorRamp
to hex-because every simpler solution didn't work for me.
看起来像这样:
代码(颜色栏创建了一些问题):
The code (the colorbar created some issues):
### Set category order
yform <- list(categoryorder = "array",
categoryarray = rev(factors),
title="Factor",zeroline=F,showticklabels=T)
### set the color scale and convert it to hex
library(grDevices)
mycramp<-colorRamp(c("darkred","gray"))
mycolors<-rgb(mycramp(p.values),maxColorValue = 255)
### plot without the adjusted colorbar
library(plotly)
### Without colorbar adjustment
plot_ly(type='scatter',mode="markers",y=~factors,x=~effect.sizes,
color=~p.values,colors=grDevices::colorRamp(c("darkred","gray")),
error_x=list(array=effect.errors,color=mycolors),split=factors,showlegend=FALSE,marker=list(color=mycolors)) %>%
layout(xaxis=list(title="Effect Size",zeroline=T,showticklabels=T),yaxis=yform)
### The colorbar-adjustment kicks out the original colors of the scatter points. Either you plot them over
plot_ly(type='scatter',mode="markers",y=~factors,x=~effect.sizes,
color=~p.values,colors=grDevices::colorRamp(c("darkred","gray")),
error_x=list(array=effect.errors,color=mycolors),split=factors,showlegend=FALSE,marker=list(color=mycolors)) %>%
layout(xaxis=list(title="Effect Size",zeroline=T,showticklabels=T),yaxis=yform) %>%
colorbar(limits=c(0,1),len=0.4,title="P-Value",inherit=FALSE) %>%
add_trace(type='scatter',mode="markers",y=~factors,x=~effect.sizes,
showlegend=FALSE,marker=list(color=mycolors),inherit=FALSE) %>%
layout(xaxis=list(title="Effect Size",zeroline=T,showticklabels=T),yaxis=yform)
### or you try to set the colorbar before the plot. This results in some warnings
plot_ly() %>%
colorbar(limits=c(0,1),len=0.4,title="P-Value",inherit=FALSE) %>%
add_trace(type='scatter',mode="markers",y=~factors,x=~effect.sizes,
color=~p.values,colors=grDevices::colorRamp(c("darkred","gray")),
error_x=list(array=effect.errors,color=mycolors),split=factors,showlegend=FALSE,marker=list(color=mycolors)) %>%
layout(xaxis=list(title="Effect Size",zeroline=T,showticklabels=T),yaxis=yform)
奇怪的是,这第一点很难解决并且导致了如此庞大的代码括号,因为通常plotly
很好地支持管道逻辑,并且您获得了具有所有add
功能的可读性很强的代码.
Just odd that this first point was so difficult to solve and results in such a big code bracket, because normally plotly
supports that pipe logic quite well and you get a very readable code with all the add
-functions.
我期望例如某些add_errorbar
函数,但是显然您必须在plot_ly
函数中添加错误栏,并且错误的颜色向量仅在使用split
函数时才有效.如果有人想对此发表评论或发表具有更易读代码的替代答案,那将很有趣.
I expected e.g., some add_errorbar
-function, but apparently you have to add the errorbars in the plot_ly
-function and the color-vector for the errors only works if you use the split
-function. If someone would like to comment or post an alternative answer with more readable code on this, that would be interesting.
这篇关于散点图中的颜色编码误差线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!