问题描述
我有一个数据框,
Test Test1
[1,1,1] [1,2,2]
[1,2,2] [1,0,1]
[1,0,1] [1,1,0]
[2,2,0] [0,2,2]
[1,2,0] [1,0,2]
我正在尝试比较两个数字应该匹配并且第三个数字应该为o的两个数组,所以像[1,0,1] [1,1,0]
应该被匹配并且当两个数字匹配并且第三个数字是0时返回true. [2,2,0] [0,2,2]
相同,但[1,2,0] [1,0,2]
不应匹配,因为它没有相同的数字.将返回false.那么,有什么办法吗?
I am trying to compare the two arrays where 2 numbers should match and third one should be o.So like [1,0,1] [1,1,0]
should be matched and return true as two numbers are matching and third one is 0 . same for [2,2,0] [0,2,2]
but [1,2,0] [1,0,2]
this should not match as it does not have the same numbers.will return false. So,Is there any way to do this ?
推荐答案
这是您需要的测试功能(我认为,假设所有值均为正值)
This is the testing function you need (I think, assuming all values are positive)
def test_func(x):
A = x[0]
B = x[1]
f = lambda X: np.unique(X, return_counts = True)
Au, Ac = f(A)
Bu, Bc = f(B)
return np.all(Au == Bu) and \
Au.size == 2 and \
Ac[0] == 1 and \
Bc[0] == 1
并要在pandas
中申请(不是熊猫专家,但我认为这应该可行):
And to apply in in pandas
(not a pandas expert, but I think this should work):
df['new_col'] = df[['Test', 'Test1']].apply(test_func, axis = 1)
在任何情况下,此问题应该可以帮助您将函数应用于两列.
in any case, this question should help you apply your function over two columns.
这篇关于上一个和下一个数组应该有两个很常见的值pandas的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!