问题描述
我经常使用Pandas
,而且效果很好.我也使用TimeGrouper
,它很棒.我实际上不知道关于TimeGrouper
的文档在哪里.有吗?
I use Pandas
a lot and its great. I use TimeGrouper
as well, and its great. I actually dont know where is the documentation about TimeGrouper
. Is there any?
谢谢!
推荐答案
pd.TimeGrouper()
是,而推荐使用 pd.Grouper()
.
pd.TimeGrouper()
was formally deprecated in pandas v0.21.0 in favor of pd.Grouper()
.
当您还要对非datetime列进行分组时,pd.Grouper()
的最佳用法是在groupby()
中.如果您只需要按频率分组,请使用resample()
.
The best use of pd.Grouper()
is within groupby()
when you're also grouping on non-datetime-columns. If you just need to group on a frequency, use resample()
.
例如,假设您拥有:
>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(444)
>>> df = pd.DataFrame({'a': np.random.choice(['x', 'y'], size=50),
'b': np.random.rand(50)},
index=pd.date_range('2010', periods=50))
>>> df.head()
a b
2010-01-01 y 0.959568
2010-01-02 x 0.784837
2010-01-03 y 0.745148
2010-01-04 x 0.965686
2010-01-05 y 0.654552
您可以做:
>>> # `a` is dropped because it is non-numeric
>>> df.groupby(pd.Grouper(freq='M')).sum()
b
2010-01-31 18.5123
2010-02-28 7.7670
但是上面的内容是不必要的,因为您只是在索引上分组.相反,您可以这样做:
But the above is a little unnecessary because you're only grouping on the index. Instead you could do:
>>> df.resample('M').sum()
b
2010-01-31 16.168086
2010-02-28 9.433712
产生相同的结果.
相反,在这种情况下,Grouper()
会很有用:
Conversely, here's a case where Grouper()
would be useful:
>>> df.groupby([pd.Grouper(freq='M'), 'a']).sum()
b
a
2010-01-31 x 8.9452
y 9.5671
2010-02-28 x 4.2522
y 3.5148
有关更多详细信息,请参阅Ted Petrou的 熊猫食谱 .
For some more detail, take a look at Chapter 7 of Ted Petrou's Pandas Cookbook.
这篇关于 pandas :TimeGrouper的文档在哪里?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!