本文介绍了 pandas :将TimeGrouper与另一个Groupby参数结合使用的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有以下DataFrame:
df = pd.DataFrame({
'Branch':'AAAAA B'.split(),
'买方':'Carl Mark Carl Joe Joe Carl'.split(),
'Quantity':[1,3,5,8,9,3],
'日期':[
DT.datetime(2013,1,1,13,0),
DT.datetime(2013,1,1,13,5),
DT.datetime(2013,10,1,20,0),
DT.datetime(2013,10,2,10,0),
DT.datetime(2013,12,2,12 ,0),
DT.datetime(2013,12,2,14,0),
]})
from pandas.tseries.resample import TimeGrouper
如何使用TimeGrouper将分组和数据分组为20天?
我以前的所有尝试都失败了,因为我无法将TimeGrouper与groupby函数中的另一个参数组合在一起。
我会非常感谢您的帮助。
谢谢
Andy
解决方案
来自这里的讨论:
In [38]:df.set_index('Date')。groupby(pd.TimeGrouper('6M'))。apply(lambda x:x.groupby ('Branch')。sum())
出[38]:
数量
分支
2013-01-31 A 4
2014-01-31 A 22
B 3
而且有点复杂的问题
In [55]:def testf(df):
....:if(df ['Buyer'] =='Mark') .sum()> 0:
.... return系列(dict(quantity = df ['Quantity']。sum(),buyer ='mark'))
....:return Series(dict数量= df ['Quantity']。sum()* 100,buyer ='other'))
....:
在[56]中:df.set_index('Date ').groupby(pd.TimeGrouper('6M'))。apply(lambda x:x.groupby('Branch')。apply(testf))
Out [56]:
买方数量
分行
2013-01-31 A分4
2014-01-31其他2200
B其他300
I have the following DataFrame:
df = pd.DataFrame({
'Branch' : 'A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Joe Joe Carl'.split(),
'Quantity': [1,3,5,8,9,3],
'Date' : [
DT.datetime(2013,1,1,13,0),
DT.datetime(2013,1,1,13,5),
DT.datetime(2013,10,1,20,0),
DT.datetime(2013,10,2,10,0),
DT.datetime(2013,12,2,12,0),
DT.datetime(2013,12,2,14,0),
]})
from pandas.tseries.resample import TimeGrouper
How can I group this data by the Branch and on a 20 day period using TimeGrouper?
All my previous attempts failed, because I could not combine TimeGrouper with another argument in the groupby function.
I would deeply appreciate your help.
Thank you
Andy
解决方案
From the discussion here: https://github.com/pydata/pandas/issues/3791
In [38]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').sum())
Out[38]:
Quantity
Branch
2013-01-31 A 4
2014-01-31 A 22
B 3
And a bit more complicated question
In [55]: def testf(df):
....: if (df['Buyer'] == 'Mark').sum() > 0:
....: return Series(dict(quantity = df['Quantity'].sum(), buyer = 'mark'))
....: return Series(dict(quantity = df['Quantity'].sum()*100, buyer = 'other'))
....:
In [56]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').apply(testf))
Out[56]:
buyer quantity
Branch
2013-01-31 A mark 4
2014-01-31 A other 2200
B other 300
这篇关于 pandas :将TimeGrouper与另一个Groupby参数结合使用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!