本文介绍了将2D numpy数组平均分组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试通过对元素进行平均来将一个numpy数组分组为较小的大小.例如,将100x100数组中的平均每个for 5x5子数组取为20x20大小的数组.由于需要处理大量数据,这是一种有效的方法吗?
I am trying to group a numpy array into smaller size by taking average of the elements. Such as take average foreach 5x5 sub-arrays in a 100x100 array to create a 20x20 size array. As I have a huge data need to manipulate, is that an efficient way to do that?
推荐答案
我已经尝试过使用较小的数组,因此请使用您的数组进行测试:
I have tried this for smaller array, so test it with yours:
import numpy as np
nbig = 100
nsmall = 20
big = np.arange(nbig * nbig).reshape([nbig, nbig]) # 100x100
small = big.reshape([nsmall, nbig//nsmall, nsmall, nbig//nsmall]).mean(3).mean(1)
6x6-> 3x3的示例:
An example with 6x6 -> 3x3:
nbig = 6
nsmall = 3
big = np.arange(36).reshape([6,6])
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
small = big.reshape([nsmall, nbig//nsmall, nsmall, nbig//nsmall]).mean(3).mean(1)
array([[ 3.5, 5.5, 7.5],
[ 15.5, 17.5, 19.5],
[ 27.5, 29.5, 31.5]])
这篇关于将2D numpy数组平均分组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!