问题描述
假设我有两个列表:
x1 = [1,2,3,4,5,6,7,8,1,10]
x2 = [2,4,2,1,1,1,1,1,2,1]
在此,列表的每个索引i
是时间点,并且x2[i]
表示在时间i
观察到的比x1[i]
的次数(频率).还要注意x1 [0] = 1和x1 [8] = 1,总频率为4(= x2 [0] + x2 [8]).
Here, each index i
of the list is a point in time, and x2[i]
denotes the number of times (frequency) than x1[i]
was observed was observed at time i
. Note also that x1[0] = 1 and x1[8] = 1, with a total frequency of 4 (= x2[0] + x2[8]).
如何有效地将其转换为直方图?下面是一种简单的方法,但这可能效率不高(创建第三个对象并循环执行),并且由于我拥有巨大的数据,这会对我造成伤害.
How do I efficiently turn this into a histogram? The easy way is below, but this is probably inefficient (creating third object and looping) and would hurt me since I have gigantic data.
import numpy as np
import matplotlib.pyplot as plt
x3 = []
for i in range(10):
for j in range(x2[i]):
x3.append(i)
hist, bins = np.histogram(x1,bins = 10)
width = 0.7*(bins[1]-bins[0])
center = (bins[:-1]+bins[1:])/2
plt.bar(center, hist, align = 'center', width = width)
plt.show()
推荐答案
一种方法是使用x3 = np.repeat(x1,x2)
并使用x3制作直方图.
One way is to use x3 = np.repeat(x1,x2)
and make a histogram with x3.
这篇关于带有单独列表的直方图表示频率的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!