本文介绍了Python Dataflow SDK中的自定义机器类型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

根据>是否可以使用一个用于Dataflow实例的自定义计算机?您可以通过将名称指定为custom-<number of cpus>-<memory in mb>

According to Is it possible to use a Custom machine for Dataflow instances? you can set the custom machine type for a dataflow operation by specifying the name as custom-<number of cpus>-<memory in mb>

但是答案是针对Java Api和旧的Dataflow版本,而不是新的Apache Beam实现和Python.

But that answer is for the Java Api and the old Dataflow version, not the new Apache Beam implementation and Python.

如果我在2.0.0 google-cloud-dataflow python API中提供了--worker_machine_type custom-8-5376,则会出现以下错误:

If I supply --worker_machine_type custom-8-5376in the 2.0.0 google-cloud-dataflow python API, I get the following error:

我还尝试在计算引擎中定义一个新的实例模板,并在--worker_machine_type参数中提供该模板的名称,但这也不起作用.

I also tried defining a new instance template in the compute engine and supplying the name of that template in the --worker_machine_type parameter, but that doesn't work, either.

如何使用自定义计算机类型在Dataflow 2.0.0上运行工作流?

How can you run a workflow on Dataflow 2.0.0 with a custom machine type?

推荐答案

每个自定义计算机类型doc: https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type

per custom machine type doc:https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type

因此对于8个vCPU,最小为7424MiB.

So for 8 vCPUs, 7424MiB is the minimum.

能否请您再试一次?

这篇关于Python Dataflow SDK中的自定义机器类型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-22 23:37