本文介绍了GIS:基于人口相等的区域划分的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想将美国的一个州划分为人口大致相等的 20 个部分.我可以使用,例如,大片、邮政编码或其他较小的地理区域来做到这一点.我正在寻找一种算法来进行分区.它可以是任何语言或软件(ArcGIS、QGIS、python、PostGIS、R、node).

I want to partition a US state into 20 parts of approximately equal population. I can do this using, say, tracts, ZIP codes or another smaller geography. I'm looking for an algorithm to do the partitioning. It can be in any language or software (ArcGIS, QGIS, python, PostGIS, R, node).

对于分组或聚类算法,我看过像 k-means、ArcGIS Grouping Analysis 等.这些似乎没有做需要的,因为它们基于变量的相似性进行分组不要根据变量划分为相等的大小.我对 ESRI 的分区工具 的快速浏览表明这可能是一种可能性.

For grouping or clustering algorithms I've looked at like k-means, ArcGIS Grouping Analysis, etc. These do not seem to do what's needed, since they group based on the similarity of a variable don't partition into equal size based on a variable. My quick look at ESRI's districting tool suggests that this might be a possibility.

还有其他建议吗?

推荐答案

您应该考虑最短分割线算法,推荐用于创建最佳紧凑投票区.这是描述其解决gerrymandering的结果.

You should consider the Shortest splitline algorithm, recommended for creating optimally compact voting districts. Here is a description of its results in solving gerrymandering.

这篇关于GIS:基于人口相等的区域划分的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-02 20:34