本文介绍了rang()无法识别列名参数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

在R内,我使用 dplyr ,更具体地说是 arrange()
arrange 函数无法按预期工作。

Within R, I use dplyr and more specifically arrange().Somehow the arrange function doesn't work as expected.

在下面的示例中,我先存储了列的名称,然后将此变量作为参数传递给名为 my_function的自定义函数。

In the example below first I store the name of a column, then I pass this variable as a parameter to a custom function called 'my_function'.

target_column = 'mean_age'

# below the function
my_function <- function(target_column, number){
    df <- read.csv('file.csv', stringsAsFactors=FALSE)
    df <- df[, c(1,4,10)]
    names(df) <-  c('place','state','mean_age')
    df1 <- df %>% group_by(state) %>% arrange(target_column) 
    df1 %>% summarise(rank = nth(target_column, number))        
}

由于 arrange():

R returns an error when 'my_function' is called due to the input to arrange():

当名称该列的直接放入 arrange(),而不是引用字符串的变量(如上面的示例),它确实接受参数。

When the name of the column is put directly into arrange(), instead of a variable that references to a string (like example above), it does accept the parameter.

df %>% group_by(state) %>% arrange(mean_age) 

如何更好地将列名的参数传递给'my_function',所以 arrange()

How can I pass the parameter for the column name in a better way to 'my_function', so arrange() will recognize it?

推荐答案

您需要先将字符串参数解析为quosure,然后用<$ c $取消引用c> !!

You need to first parse your string argument to a quosure, then unquote it with !!:

library(dplyr)
library(rlang)

target_column = 'mean_age'

my_function <- function(target_column, number){
    target_quo = parse_quosure(target_column)

    df <- read.csv('file.csv', stringsAsFactors=FALSE)
    df <- df[, c(1,4,10)]
    names(df) <-  c('place','state','mean_age')
    df1 <- df %>% group_by(state) %>% arrange(!!target_quo) 
    df1 %>% summarise(rank = nth(target_column, number))        
}

my_function('mean_age', 10)

如果想提供 target_column 作为未引用的列名,则可以使用 enquo 代替:

If you want to be able to supply target_column as an unquoted column name, you can use enquo instead:

my_function <- function(target_column, number){
    target_quo = enquo(target_column)

    df <- read.csv('file.csv', stringsAsFactors=FALSE)
    df <- df[, c(1,4,10)]
    names(df) <-  c('place','state','mean_age')
    df1 <- df %>% group_by(state) %>% arrange(!!target_quo) 
    df1 %>% summarise(rank = nth(target_column, number))        
}

my_function(mean_age, 10)

注意:

通常, enquo 也适用于字符串参数,但是 arrange 本身不允许这样做,因此以下内容不适用于第二个示例:

Normally, enquo will also work for string arguments, but arrange itself does not allow it, so the following does not work for the second example:

my_function('mean_age', 10)

下面是一个玩具示例,用来说明我的意思,因为OP的问题不可重现:

Below is a toy example to demonstrate what I mean, since OP's question is not reproducible:

library(dplyr)
library(rlang)

test_func = function(var){
    var_quo = parse_quosure(var)
    mtcars %>%
      select(!!var_quo) %>%
      arrange(!!var_quo)
}

test_func2 = function(var){
  var_quo = enquo(var)
  mtcars %>%
    select(!!var_quo) %>%
    arrange(!!var_quo)
}

结果:

> test_func("mpg") %>%
+   head()
   mpg
1 10.4
2 10.4
3 13.3
4 14.3
5 14.7
6 15.0

> test_func2(mpg) %>%
+   head()
   mpg
1 10.4
2 10.4
3 13.3
4 14.3
5 14.7
6 15.0

> test_func2("mpg") %>%
+   head()



这篇关于rang()无法识别列名参数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-21 12:20