本文介绍了YARN上的Spark所使用的vcore太少的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在具有以下设置的YARN群集(HDP 2.4)中使用Spark:

I'm using Spark in a YARN cluster (HDP 2.4) with the following settings:

  • 1个主节点
    • 64 GB RAM(可用50 GB)
    • 24核(可用19核)
    • 1 Masternode
      • 64 GB RAM (50 GB usable)
      • 24 cores (19 cores usable)
        每个
      • 64 GB RAM(可用50 GB)
      • 每个24核(可用19核)
      • (一个主机的)所有容器的内存:50 GB
      • 最小容器大小= 2 GB
      • 最大容器大小= 50 GB
      • vcores = 19
      • 最低#vcores/container = 1
      • 最大#vcores/容器= 19

      当我使用命令spark-submit --num-executors 30 --executor-cores 3 --executor-memory 7g --driver-cores 1 --driver-memory 1800m ...运行spark应用程序时,YARN使用以下设置创建31个容器(每个执行器进程+一个驱动程序进程一个):

      When I run my spark application with the command spark-submit --num-executors 30 --executor-cores 3 --executor-memory 7g --driver-cores 1 --driver-memory 1800m ... YARN creates 31 containers (one for each executor process + one driver process) with the following settings:

      • 正确:具有1个核心的主容器&约1800 MB RAM
      • 正确:30个从属容器,每个容器具有〜7 GB RAM
      • 但不正确:根据YARN ResourceManager用户界面,每个从属容器仅运行 1个核心,而不是3个(显示的是95个中的31个,而不是91 = 30 * 3 +1),请参见下面的屏幕截图
      • Correct: Master container with 1 core & ~1800 MB RAM
      • Correct: 30 slave containers with ~7 GB RAM each
      • BUT INCORRECT: each slave container only runs with 1 core instead of 3, according to the YARN ResourceManager UI (it shows only 31 of 95 in use, instead of 91 = 30 * 3 + 1), see screenshot below

      我的问题在这里:为什么spark-submit参数--executor-cores 3没有作用?

      My question here: Why does the spark-submit parameter --executor-cores 3 have no effect?

      推荐答案

      好吧,似乎与此处讨论的问题相同:该解决方案也对我有用.

      Ok, seems to be the same issue as discussed here: yarn is not honouring yarn.nodemanager.resource.cpu-vcores The solution also worked for me.

      这篇关于YARN上的Spark所使用的vcore太少的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 21:59