本文介绍了使用SVM实时进行面部表情分类的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我目前正在一个项目中,我必须提取悲伤或快乐的用户的面部表情(一次从一个网络摄像头一次只有一个用户).

I am currently working on a project where I have to extract the facial expression of a user (only one user at a time from a webcam) like sad or happy.

我对面部表情进行分类的方法是:

My method for classifying facial expressions is:

  • 使用opencv检测图像中的人脸
  • 使用ASM和障碍物获取面部特征点

现在我正在尝试进行面部表情分类

and now i'm trying to do facial expression classification

SVM是一个不错的选择吗?如果可以的话,我该如何从SVM开始:

is SVM a good option ? and if it is how can i start with SVM :

我将如何使用这些地标为每种情感训练svm?

how i'm going to train svm for every emotions using this landmarks ?

推荐答案

是的,已经证明SVM在此任务中表现良好.已经有数十篇(如果不是杂乱无章的)论文描述了这种过程.

Yes, SVMs have been numerously shown to perform well in this task. There have been dozens (if not hundreads) of papers describing such procedures.

例如:

  • Simple paper
  • Longer paper
  • Poster about it
  • More complex example

可以在 http://www.support-vector-machines.org/(例如书名,软件链接等)

Some basic sources of the SVMs themselves can be obtained on http://www.support-vector-machines.org/ (like books titles, software links etc.)

如果您只是想使用它们而不是了解它们,那么您可以获取以下基本库之一:

And if you are just interested in using them rather then understanding you can get one of basic libraries:

  • libsvm http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  • svmlight http://svmlight.joachims.org/

这篇关于使用SVM实时进行面部表情分类的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-01 08:51