本文介绍了如何在 Keras 中获取图层的权重?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我使用的是 Windows 10、Python 3.5 和 tensorflow 1.1.0.我有以下脚本:
I am using Windows 10, Python 3.5, and tensorflow 1.1.0. I have the following script:
import tensorflow as tf
import tensorflow.contrib.keras.api.keras.backend as K
from tensorflow.contrib.keras.api.keras.layers import Dense
tf.reset_default_graph()
init = tf.global_variables_initializer()
sess = tf.Session()
K.set_session(sess) # Keras will use this sesssion to initialize all variables
input_x = tf.placeholder(tf.float32, [None, 10], name='input_x')
dense1 = Dense(10, activation='relu')(input_x)
sess.run(init)
dense1.get_weights()
我收到错误:AttributeError: 'Tensor' object has no attribute 'weights'
我做错了什么,如何获得 dense1
的权重?我看过 this 和 this SO 帖子,但我仍然无法使其工作.
What am I doing wrong, and how do I get the weights of dense1
? I have look at this and this SO post, but I still can't make it work.
推荐答案
如果你写:
dense1 = Dense(10, activation='relu')(input_x)
那么dense1
不是一层,而是一层的输出.层是 Dense(10, activation='relu')
Then dense1
is not a layer, it's the output of a layer. The layer is Dense(10, activation='relu')
看来你的意思是:
dense1 = Dense(10, activation='relu')
y = dense1(input_x)
这是一个完整的片段:
import tensorflow as tf
from tensorflow.contrib.keras import layers
input_x = tf.placeholder(tf.float32, [None, 10], name='input_x')
dense1 = layers.Dense(10, activation='relu')
y = dense1(input_x)
weights = dense1.get_weights()
这篇关于如何在 Keras 中获取图层的权重?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!