本文介绍了在遗传算法中,实数编码的交叉指数0.25是什么意思?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我熟悉二进制表示法中的交叉和变异索引,但是在实际编码中,我遇到了几篇文章,其中将 crossover index mutation index 用作参数值.

I am familiar with crossover and mutation indexes in binary representation but in real encoding, I came across with several articles in which crossover index and mutation index are used as parameter values.

例如,我们有30030个决策变量,那么交叉指数= 0.25意味着什么?

For example, we have population size of 300 and 30 decision variables then what does crossover index = 0.25 means?

也对100+current generation number的突变指数感到困惑.

Also confused about the mutation index of 100+current generation number.

推荐答案

交叉索引

已经开发了许多实编码的交叉运算符,它们可以从两个父解决方案中创建两个子解决方案.

Crossover index

A number of real-coded crossover operators have been developed that create two children solutions from two parent solutions.

也许您正在阅读的论文使用模拟二进制交叉(SBX).

Maybe the papers you're reading use the Simulated Binary Crossover (SBX).

对于该运算符,交叉索引(η)是非负实数参数. η的值越大,创建近亲解的可能性就越大; η的值越小,则可以选择远距离的解作为子解决方案.

For this operator the crossover index (η) is a non-negative real parameter. A large value of η gives a higher probability for creating near parent solutions and a small value of η allows distant solutions to be selected as children solutions.

SBX算法的分步过程是:

The step by step procedure for SBX algorithm is:

  1. 选择一个随机数u ∈ [0; 1[.
  2. 计算βq:

使用以下等式计算子项解决方案:

Compute children solutions using these equations:

这里Xi(1, t+1)Xi(2, t+1)是从两个父母Xi(1, t)Xi(2, t)获得的孩子.

Here Xi(1, t+1) and Xi(2, t+1) are the children obtained from two parents Xi(1, t) and Xi(2, t).

在C中可能的实现是此处(也请参阅Scala遗传算法(GA)库中的模拟二进制交叉(SBX)交叉算子和).

A possible implementation in C is here (also take a look at Simulated Binary Crossover (SBX) crossover operator in Scala genetic algorithm (GA) library and Simulated Binary Crossover (SBX) crossover operator example).

所以当η=2/η=5为时创建连续变量的子解的概率分布为:

So the probability distribution for creating children solutions of continuous variables when η=2 / η=5 is:

父母被标记为o,您可以看到更大的值如何为创建近亲解决方案提供更高的可能性.

Parents are marked with o and you can see how a larger value gives higher probability for creating near-parent solutions.

SBX的参考文件为:

The reference paper for SBX is:

Ram Bhushan Agrawal的Kalyanmoy Deb

Kalyanmoy Deb, Ram Bhushan Agrawal

1995年(PDF 此处)

1995 (PDF here)

突变指数

变异指数(ηₘ)(可能)是Deb和Agrawal(1999)建议的多项式变异算子的参数.

Mutation index

The mutation index (ηₘ) is (probably) a parameter of the polynomial mutation operator suggested by Deb and Agrawal (1999).

ηₘ在变量中引起O((b – a) / ηₘ)的扰动,其中ab是变量的上下限.

ηₘ induces an effect of a perturbation of O((b – a) / ηₘ) in a variable, where a and b are lower and upper bounds of the variable.

然后将较大的ηₘ用于后代是合理的.

Then it's reasonable to use a larger ηₘ for subsequent generations.

这篇关于在遗传算法中,实数编码的交叉指数0.25是什么意思?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-11 16:43