本文介绍了双向混合模型方差分析的事后测试的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在使用混合模型进行重复测量方差分析.我想进行事后测试,以查看TREAT * TIME交互作用的p值,但我仅设法使用了以下ghlt Tukey测试,但没有给我所需的交互作用.

I am doing a repeated measures anova with a mixed model. I would like to run a post hoc test to see the p-values of the interaction TREAT*TIME, but I only managed to use the following ghlt Tukey test which do not give me the interaction I am looking for.

library(multcomp)
library(nlme)
oi<-lme(total ~ TREAT * TIME, data=TURN, random = ~1|NO_UNIT)
anova(oi)
summary(glht(oi, linfct=mcp(TIME="Tukey", TREAT="Tukey")))

我要寻找的东西是这样的:

what I would be looking for is something like:

summary(glht(oi, linfct=mcp(TIME="Tukey",TREAT="Tukey",TREAT*TIME="Tukey")))

推荐答案

如果您有平衡的模型,请使用GAD包中的snk.test(model, term="TREAT*TIME", among="TREAT", within="TIME");如果您的模型不平衡,请使用lsmeans中的summary( lsmeans( oi, pairwise ~ TIME*TREAT), infer=TRUE)

Use snk.test(model, term="TREAT*TIME", among="TREAT", within="TIME") from the package GAD if you have a balanced model and summary( lsmeans( oi, pairwise ~ TIME*TREAT), infer=TRUE) from lsmeans if your model is unbalanced

这篇关于双向混合模型方差分析的事后测试的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-09 23:45