问题描述
我正在使用混合模型进行重复测量方差分析.我想进行事后测试,以查看TREAT * TIME交互作用的p值,但我仅设法使用了以下ghlt Tukey测试,但没有给我所需的交互作用.
I am doing a repeated measures anova with a mixed model. I would like to run a post hoc test to see the p-values of the interaction TREAT*TIME, but I only managed to use the following ghlt Tukey test which do not give me the interaction I am looking for.
library(multcomp)
library(nlme)
oi<-lme(total ~ TREAT * TIME, data=TURN, random = ~1|NO_UNIT)
anova(oi)
summary(glht(oi, linfct=mcp(TIME="Tukey", TREAT="Tukey")))
我要寻找的东西是这样的:
what I would be looking for is something like:
summary(glht(oi, linfct=mcp(TIME="Tukey",TREAT="Tukey",TREAT*TIME="Tukey")))
推荐答案
如果您有平衡的模型,请使用GAD包中的snk.test(model, term="TREAT*TIME", among="TREAT", within="TIME")
;如果您的模型不平衡,请使用lsmeans中的summary( lsmeans( oi, pairwise ~ TIME*TREAT), infer=TRUE)
Use snk.test(model, term="TREAT*TIME", among="TREAT", within="TIME")
from the package GAD if you have a balanced model and summary( lsmeans( oi, pairwise ~ TIME*TREAT), infer=TRUE)
from lsmeans if your model is unbalanced
这篇关于双向混合模型方差分析的事后测试的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!