本文介绍了如何在opencv中使用基于flann的匹配器,或者一般是flann?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html#flannbasedmatcher

请有人给我看示例代码或告诉我如何使用这个类和方法.我只想将查询图像中的 SURF 与通过应用 Flann 设置的图像匹配.我在示例中看到了许多图像匹配代码,但我仍然难以理解的是量化图像与其他图像的相似程度的指标.任何帮助将不胜感激.

Please can somebody show me sample code or tell me how to use this class and methods.I just want to match SURF's from a query image to those with an image set by applying Flann. I have seen many image match code in the samples but what still eludes me is a metric to quantify how similar an image is to other. Any help will be much appreciated.

推荐答案

这里是未经测试的示例代码

Here's untested sample code

using namespace std;
using namespace cv;

Mat query; //the query image
vector<Mat> images;   //set of images in your db

/* ... get the images from somewhere   ... */

vector<vector<KeyPoint> > dbKeypoints;
vector<Mat> dbDescriptors;

vector<KeyPoint> queryKeypoints;
Mat queryDescriptors;

/* ... Extract the descriptors ... */

FlannBasedMatcher flannmatcher;

//train with descriptors from your db
 flannmatcher.add(dbDescriptors);
 flannmatcher.train();

vector<DMatch > matches;

flannmatcher.match(queryDescriptors, matches);

/* for kk=0 to matches.size()

       the best match for queryKeypoints[matches[kk].queryIdx].pt
       is dbKeypoints[matches[kk].imgIdx][matches[kk].trainIdx].pt

 */

查找与查询图像最相似"的图像取决于您的应用程序.也许匹配的关键点的数量就足够了.或者您可能需要更复杂的相似性度量.

Finding the most 'similar' image to the query image depends on your application. Perhaps the number of matched keypoints is adequate. Or you may need a more complex measure of similarity.

这篇关于如何在opencv中使用基于flann的匹配器,或者一般是flann?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-14 00:51