本文介绍了通过闪亮的R中依赖于动态的输入过滤器在GGplot上绘制正确的百分比标签的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试在ggplot上绘制百分比标签,该ggplot是根据3个彼此依赖的用户输入呈现的.最后提供了我的代码/示例数据集.

I'm trying to plot percentage labels on a ggplot that is rendered as per the 3 user input's which are dependent of each other.My Code/Example Data Set is provided at the end.

到目前为止,我已经能够实现的目标.在当前图表中,由于在特定一周内有多个InTAT/Out TAT值,该百分比被分成了多个In/Out TAT%,我们可以将其合并为一个In TAT& TAT.某周的TAT百分比

What i Have been able to achieve as of Now.In the present plot the percentage is getting divided in to Multiple In/Out TAT %'s as there are multiple values of InTAT/Out TAT for a particular week, can we consolidate into just one In TAT & Out TAT % for a particular week

最后,当仅选择一个过滤器而不是全部"过滤器时,第三过滤器坏了.它显示出此错误错误:类型为'closure'的对象不能被子集化"",

And lastly the 3rd filter is broken, when only one filter is selected instead of "All" it show's this error "Error : object of type 'closure' is not subsettable",

代码:

library(plotly)
library(ggplot2)
library(dplyr)
library(reshape2)
library(gtools)

# plot1 <- df
plot1 <- read.csv("plot1.csv", sep = ",", header = TRUE)

ui <- shinyUI(
  
  navbarPage(
    title = 'Dashboard',
    
    tabPanel('Performance',
             tabsetPanel(
               tabPanel('Tab1',
                        fluidRow(
                          column(3,selectInput('warehouse', 'Select Warehouse', c("All",as.character(unique(plot1$Warehouse))))),
                          column(3,selectInput('region', 'Select Region', c("All",as.character(unique(plot1$Region))))),
                          column(3,checkboxGroupInput("mov_type","Select Movement Type", inline = TRUE, choices = c("All",unique(plot1$Movement_Type)))),
                          #column(3,selectInput('mov_type', 'Select Movement Type', c("All",as.character(unique(plot1$Movement_Type))))),
                          column(12,plotlyOutput("myplot_fwd_f"))
                        )
               )
             ))
    
    
    # tabPanel('Orders',
    #          fluidRow( DTOutput("t1")
    #          )
    # )
  )
  
)


server <- function(input, output, session) {
  
  data1 <- reactive({
    # plot1 <- df # read.csv("plot1.csv", sep = ",", header = TRUE)
    temp <- plot1
    if (input$warehouse != "All"){
      temp <- temp[temp$Warehouse == input$warehouse,]
    }
    return(temp)
  })
  
  observeEvent(input$warehouse, {
    df1 <- data1()
    updateSelectInput(session,"region",choices=c("All",as.character(unique(df1$Region))))
  })
  
  data2 <- reactive({
    req(input$region)
    plot1 <- data1()
    temp <- plot1
    if (input$region != "All"){
      temp <- temp[temp$Region == input$region,]
    }
    tmp <- temp %>%
      group_by(Week) %>%
      mutate(p = Quantity  / sum(Quantity )) %>%
      ungroup()
    return(tmp)
  })
  
  observeEvent(input$region, {
    df2 <- req(data2())
    #updateSelectInput(session,"mov_type",choices=c("All",unique(df2$Movement_Type)) )
    updateCheckboxGroupInput(session,"mov_type",choices=c("All",as.character(unique(df2$Movement_Type))), inline=TRUE, selected="All")
  })
  
  data3 <- reactive({
    req(input$mov_type)
    if ("All" %in% input$mov_type){ 
      data <- data2()
    }else{
      data <- data[data$Movement_Type %in% input$mov_type,]
    }
    tmp <- data %>%
      group_by(Week) %>%
      mutate(Quantity = sum(Quantity)) %>% distinct(Week,f_TAT,Movement_Type,Quantity) %>% 
      mutate(p = Quantity  / sum(Quantity )) %>%
      ungroup()
    return(tmp)
  })
  
  output$t1 <- renderDT(data3())
  
  output$myplot_fwd_f <- renderPlotly({
    
    data <- req(data3())
    
    p<- ggplot(data, aes(fill=f_TAT, y=p , x=Week)) +
      geom_bar(position="fill", stat="identity",colour="black") + scale_fill_manual(values=c("#44E62F", "#EC7038")) +
      labs(x = "Week") +
      labs(y = "Percentage") +
      labs(title = "") +
      scale_y_continuous(labels=scales::percent) +
      geom_text(aes(y = p, label = scales::percent(p)),
                position = position_stack(vjust = 0.5),
                show.legend = FALSE) +
      theme(axis.text.x = element_text(angle = 10))
    p <- ggplotly(p) #, tooltip="text")
    p
    
  })
  
}

shinyApp(ui, server)

数据集:

Week                    Region  Movement_Type   Warehouse   f_TAT   Quantity
March - 01 - March - 07 North   Inter-Region    FC9         In TAT  125
March - 01 - March - 07 North   Inter-Region    FC9         Out TAT 125
March - 01 - March - 07 North   Inter-Region    FC13        In TAT  5
March - 01 - March - 07 North   Inter-Region    FC19        In TAT  8700
March - 01 - March - 07 North   Same-Region     FC8         In TAT  1535
March - 01 - March - 07 North   Same-Region     FC9         In TAT  355
March - 01 - March - 07 North   Same-Region     FC10        In TAT  90
March - 01 - March - 07 North   Same-Region     FC12        In TAT  10

推荐答案

尝试一下

library(plotly)
library(ggplot2)
library(dplyr)
library(reshape2)
library(gtools)

ui <- shinyUI(
  
  navbarPage(
    title = 'Dashboard',
    
    tabPanel('Performance',
             tabsetPanel(
               tabPanel('Tab1',
                        fluidRow(
                          column(3,selectInput('warehouse', 'Select Warehouse', c("All",as.character(unique(plot1$Warehouse))))),
                          column(3,selectInput('region', 'Select Region', c("All",as.character(unique(plot1$Region))))),
                          column(6,checkboxGroupInput("mov_type","Select Movement Type", inline = TRUE, choices = c("All",unique(plot1$Movement_Type)))),
                          #column(3,selectInput('mov_type', 'Select Movement Type', c("All",as.character(unique(plot1$Movement_Type))))),
                          column(12,plotlyOutput("myplot_fwd_f"))
                        )
               )
             )),
    
    
    tabPanel('Orders',
             fluidRow( DTOutput("t1")
             )
    )
  )
  
)


server <- function(input, output, session) {
  
  data1 <- reactive({
    
    temp <- plot1
    if (input$warehouse != "All"){
      temp <- temp[temp$Warehouse == input$warehouse,]
    }
    return(temp)
  })
  
  observeEvent(input$warehouse, {
    df1 <- data1()
    updateSelectInput(session,"region",choices=c("All",as.character(unique(df1$Region))))
  })
  
  data2 <- reactive({
    req(input$region)
    plot1 <- data1()
    temp <- plot1
    if (input$region != "All"){
      temp <- temp[temp$Region == input$region,]
    }
    tmp <- temp %>%
      group_by(Week) %>%
      mutate(p = Quantity  / sum(Quantity )) %>%
      ungroup()
    return(tmp)
  })
  
  observeEvent(input$region, {
    df2 <- req(data2())
    #updateSelectInput(session,"mov_type",choices=c("All",unique(df2$Movement_Type)) )
    updateCheckboxGroupInput(session,"mov_type",choices=c("All",as.character(unique(df2$Movement_Type))), inline=TRUE, selected="All")
  })
  
  data3 <- reactive({
    req(input$mov_type)
    if ("All" %in% input$mov_type){
      data <- data2()
    }else{
      data <- data2()[data2()$Movement_Type %in% input$mov_type,]
    }
    tmp <- data %>%
      group_by(Week,f_TAT) %>%
      mutate(Quantity = sum(Quantity)) %>% distinct(Week,f_TAT,Quantity) %>%
      group_by(Week) %>%
      mutate(p = Quantity  / sum(Quantity )) %>%
      ungroup()
    return(tmp)
  })
  
  output$t1 <- renderDT(data3())
  
  output$myplot_fwd_f <- renderPlotly({
    
    data <- req(data3())
    
    p<- ggplot(data, aes(fill=f_TAT, y=p , x=Week)) +
      geom_bar(position="fill", stat="identity",colour="black") + scale_fill_manual(values=c("#44E62F", "#EC7038")) +
      labs(x = "Week") +
      labs(y = "Percentage") +
      labs(title = "") +
      scale_y_continuous(labels=scales::percent) +
      geom_text(aes(y = p, label = scales::percent(p)),
                position = position_stack(vjust = 0.5),
                show.legend = FALSE) +
      theme(axis.text.x = element_text(angle = 10))
    p <- ggplotly(p) #, tooltip="text")
    p
    
  })
  
}

shinyApp(ui, server)

这篇关于通过闪亮的R中依赖于动态的输入过滤器在GGplot上绘制正确的百分比标签的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-16 01:40