本文介绍了Pandas中map,applymap和apply方法之间的区别的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

您能否通过基本示例告诉我何时使用这些矢量化方法?

Can you tell me when to use these vectorization methods with basic examples?

我看到mapSeries方法,而其余的是DataFrame方法.我对applyapplymap方法感到困惑.为什么我们有两种将函数应用于DataFrame的方法?同样,简单的例子可以很好地说明用法!

I see that map is a Series method whereas the rest are DataFrame methods. I got confused about apply and applymap methods though. Why do we have two methods for applying a function to a DataFrame? Again, simple examples which illustrate the usage would be great!

推荐答案

Wes McKinney的 Python for数据分析书,第pg. 132(我强烈推荐这本书):

Straight from Wes McKinney's Python for Data Analysis book, pg. 132 (I highly recommended this book):

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [117]: frame
Out[117]:
               b         d         e
Utah   -0.029638  1.081563  1.280300
Ohio    0.647747  0.831136 -1.549481
Texas   0.513416 -0.884417  0.195343
Oregon -0.485454 -0.477388 -0.309548

In [118]: f = lambda x: x.max() - x.min()

In [119]: frame.apply(f)
Out[119]:
b    1.133201
d    1.965980
e    2.829781
dtype: float64

也可以使用基于元素的Python函数.假设您要根据帧中的每个浮点值来计算格式化的字符串.您可以使用applymap做到这一点:

Element-wise Python functions can be used, too. Suppose you wanted to compute a formatted string from each floating point value in frame. You can do this with applymap:

In [120]: format = lambda x: '%.2f' % x

In [121]: frame.applymap(format)
Out[121]:
            b      d      e
Utah    -0.03   1.08   1.28
Ohio     0.65   0.83  -1.55
Texas    0.51  -0.88   0.20
Oregon  -0.49  -0.48  -0.31
In [122]: frame['e'].map(format)
Out[122]:
Utah       1.28
Ohio      -1.55
Texas      0.20
Oregon    -0.31
Name: e, dtype: object

总结起来,apply在DataFrame的行/列基础上工作,applymap在DataFrame的元素基础上工作,而map在Series的元素基础上工作.

Summing up, apply works on a row / column basis of a DataFrame, applymap works element-wise on a DataFrame, and map works element-wise on a Series.

这篇关于Pandas中map,applymap和apply方法之间的区别的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-27 23:11