0. 前言

随着深度学习的快速发展,神经网络已成为解决各种复杂任务的重要工具。然而,神经网络的黑盒特性使得我们对其内部运作过程和学到的表示仍然不够了解。为了更好地理解神经网络的工作原理,研究者们提出了各种可视化方法来探索网络中间层的输出。特征学习是神经网络最关键的一项任务之一,神经网络通过逐层的变换和学习,能够从原始数据中提取出高级、抽象的特征表示,这些特征表示能够捕捉到数据中的重要信息。然而,这些中间层的输出对于人类来说是难以理解的,因为它们是高维、抽象的向量。
通过可视化特征学习的结果,我们可以以直观的方式观察网络在处理数据时发生的变化,利用可视化方法能够探索中间层的输出,理解网络如何对输入数据进行编码和转换。我们可以通过观察特征图、梯度分布、降维可视化等手段来揭示网络中学到的有用模式、边缘检测、颜色分布等。在本节中,我们将探索神经网络究竟学到了什么,使用卷积神经网络 (Convolutional Neural Networks, CNN) 对包含 XO 图像的数据集进行分类ÿ

09-14 18:16