问题描述
火花1.6
如果我有一个数据集,并且我想通过使用Pearson相关性来识别具有最大预测能力的数据集中的特征,我应该使用哪些工具?
If I have a dataset and I want to identifiy the features in a dataset with the greatest predictive power by using Pearson correlation which tools should I use?
我使用的天真的方法是:
The naive approach I used... was:
val columns = x.columns.toList.filterNot(List("id","maxcykle","rul") contains)
val corrVithRul = columns.map( c => (c,x.stat.corr("rul", c, "pearson")) )
Output:
columns: List[String] = List(cykle, setting1, setting2, setting3, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20, s21, label1, label2, a1, sd1, a2, sd2, a3, sd3, a4, sd4, a5, sd5, a6, sd6, a7, sd7, a8, sd8, a9, sd9, a10, sd10, a11, sd11, a12, sd12, a13, sd13, a14, sd14, a15, sd15, a16, sd16, a17, sd17, a18, sd18, a19, sd19, a20, sd20, a21, sd21)
corrVithRul: List[(String, Double)] = List((cykle,-0.7362405993070199), (setting1,-0.0031984575547410617), (setting2,-0.001947628351500473), (setting3,NaN), (s1,-0.011460304217886725), (s2,-0.6064839743782909), (s3,-0.5845203909175897), (s4,-0.6789482333860454), (s5,-0.011121400898477964), (s6,-0.1283484484732187), (s7,0.6572226620548292), (s8,-0.5639684065744165), (s9,-0.3901015749180319), (s10,-0.04924720421765515), (s11,-0.6962281014554186), (s12,0.6719831036132922), (s13,-0.5625688251505582), (s14,-0.30676887025759053), (s15,-0.6426670441973734), (s16,-0.09716223410021836), (s17,-0.6061535537829589), (s18,NaN), (s19,NaN), (s20,0.6294284994377392), (s21,0.6356620421802835), (label1,-0.5665958821050425), (label2,-0.548191636440298), (a1,0.040592887198906136), (sd1,NaN), (a2,-0.7364292...
当然,每个地图迭代都会提交一份工作,Statistics.corr可能正是我想要的?
Which of course is submitting one job per map iteration, Statistics.corr might be what I am looking for?
推荐答案
Statistics.corr
在这里看起来像是正确的选择.您可能会考虑的另一个选项是 RowMatrix.columnSimilarities
(列之间的余弦相似度,可以选择使用带阈值采样的优化版本)(可选)和 RowMatrix.computeCovariance
.您必须先将一种或多种方式将数据组合成 Vectors
.假设列已经是 DoubleType
,则可以使用 VectorAssembler
:
Statistics.corr
looks like correct choice here. Another options you may consider are RowMatrix.columnSimilarities
(cosine similarities between columns, optionally with optimized version which uses sampling with threshold) and RowMatrix.computeCovariance
. One way or another you'll have to assemble your data into Vectors
first. Assuming columns are already of DoubleType
you can use VectorAssembler
:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.mllib.linalg.Vector
val df: DataFrame = ???
val assembler = new VectorAssembler()
.setInputCols(df.columns.diff(Seq("id","maxcykle","rul")))
.setOutputCol("features")
val rows = assembler.transform(df)
.select($"features")
.rdd
.map(_.getAs[Vector]("features"))
接下来,您可以使用 Statistics.corr
import org.apache.spark.mllib.stat.Statistics
Statistics.corr(rows)
或转换为 RowMatrix
:
import org.apache.spark.mllib.linalg.distributed.RowMatrix
val mat = new RowMatrix(rows)
mat.columnSimilarities(0.75)
这篇关于Spark 1.6 Pearson相关的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!