问题描述
查看代码:
import objgraph
import numpy as np
objgraph.show_growth()
j = 20
y = []
for i in range(5):
for l in range(j):
y.append(np.array([np.random.randint(500),np.random.randint(500)]))
print 'i:',i
objgraph.show_growth()
print '___'
#objgraph.show_most_common_types(limit=100)
j += 1
结果是:
i: 1
wrapper_descriptor 1596 +3
weakref 625 +1
dict 870 +1
method_descriptor 824 +1
i: 2
i: 3
i: 4
对于2、3和4时代,它没有显示任何增长.但它应该表明numpy.array的数量在增加
For the 2,3 and 4 epoch, it shows nothing growing. But it should show that the number of numpy.array grows
推荐答案
我对objgraph
不太熟悉,但是我认为同一问题也适用于其他Python堆分析工具,例如.
I'm not that familiar with objgraph
specifically, but I think the same issue applies to other Python heap analysis tools such as heapy
.
Numpy数组是用C实现的,它们在内部通过自己的引用计数调用Py_INCREF
和Py_DECREF
.因此,Python 垃圾收集器不会对其进行跟踪.像heapy
和(大概)objgraph
这样的工具使用Python垃圾收集器来跟踪对对象的引用,因此,numpy数组对它们不可见.
Numpy arrays are implemented in C, and do their own reference counting by internally calling Py_INCREF
and Py_DECREF
. As such, they are not tracked by the Python garbage collector. Tools like heapy
and (presumably) objgraph
use the Python garbage collector to track references to objects, so as a result numpy arrays are invisible to them.
这篇关于为什么objgraph无法捕获np.array()的增长?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!