问题描述
我对pandas的iloc函数有些困惑,因为我想选择一系列列,并且输出与预期的不同.行选择也会发生同样的情况,所以我写了一个小例子:
I am a bit confused of the iloc function of pandas, because I want to select a range of columns and the output is different than expected. The same will happen to row selection, so I wrote a little example:
template = pd.DataFrame(
{'Headline': ['Subheading', '', 'Animal', 'Tiger', 'Bird', 'Lion'],
'Headline2': ['', 'Weight', 2017, 'group1', 'group2', 'group3'],
'Headline3': ['', '', 2018, 'group1', 'group2', 'group3']
})
Headline Headline2 Headline3
0 Subheading
1 Weight
2 Animal 2017 2018
3 Tiger group1 group1
4 Bird group2 group2
5 Lion group3 group3
我想用print(template.loc[1:2])
选择第1行到第2行,结果是我所期望的:
I want to select line 1 to line 2 with print(template.loc[1:2])
the result is what I have expected:
Headline Headline2 Headline3
1 Weight
2 Animal 2017 2018
如果我这样做print(template.iloc[1:2])
我会认为我得到了相同的结果,但没有:
If I do this print(template.iloc[1:2])
I would think that I get the same result, but no:
Headline Headline2 Headline3
1 Weight
我有点困惑,因为我期望两个函数的行为相同,但是如果我选择一个范围(FROM:TO),两个函数的输出会有所不同.
似乎使用iloc必须具有TO值+1才能获得与loc print(template.iloc[1:3])
相同的结果:
I am a bit confused, because I expected the same behavior for both functions, but the output of both functions differ if I select a range (FROM:TO).
It seems like using iloc needs to have the TO value +1 in order to have the same result as loc print(template.iloc[1:3])
:
Headline Headline2 Headline3
1 Weight
2 Animal 2017 2018
有人可以给它一些照明吗?
Can someone put some light on it?
推荐答案
如:
As it mentioned in docs for loc
:
另一方面,iloc
确实基于基于整数位置的索引进行选择,因此它不包含停止索引.
On the other hand, iloc
do selects based on integer-location based indexing, so it doesn't include stop index.
这篇关于 pandas iloc返回的范围与loc不同的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!