本文介绍了haskell的foldr总是采用双参数lambda吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

Haskell newb here



我正在解决haskell中的这个问题:

 (**)消除列表元素的连续重复。 
如果列表包含重复的元素,则应该用元素的单个副本替换它们。元素的顺序不应该改变。

示例:
*(compress'(aaaabccaadeeee))
(ABCADE)

解决方案(我必须查找)使用foldr:

  compress'::公式a)=> [a]  - > [a] 
compress'xs = foldr(\x acc - > if x ==(head acc)then acc else x:acc)[last xs] xs

根据解决方案,此foldr采用两个参数x和acc。似乎所有的foldr都采用这些参数;这有什么例外吗?就像需要3个或更多的foldr?如果不是这样,那么这个惯例是否是冗余的,并且可以用更少的代码来编写公式? / code>接受2个参数的函数,但这并不妨碍它接受3个参数的函数,前提是该函数具有正确的类型签名。



如果我们有一个函数

  g :: x  - > y  - > z  - > w 

使用

  foldr ::(a  - > b  - > b) - > b  - > [a]  - > b 

我们想将 g 传递给 foldr ,则(a→b→b)→(x→y→z→w)(其中是类型相等)。由于 - > 是正确的关联,这意味着我们可以将 g 的签名写为

  x  - > y  - > (z  - > w)

和它的含义是一样的。现在我们已经产生了两个参数的函数,它们返回一个参数的函数。为了将它与 a - >类型统一起来, b - > b ,我们只需要排列参数:

  a  - > | x  - > 
b - > | y - >
b | (z - > w)

这意味着 b〜z - > ; w ,所以 y〜b〜z - > w a〜x 所以 g 的类型必须是

  g :: x  - > (z→w)→> (z  - > w)

暗示

  foldr g ::(z  - > w) - > [x]  - > (z  - > w)

这当然不是不可能的,但更不可能。我们的累加器是一个函数,对我来说,这要求用DiffLists来演示:

  type DiffList a = [a]  - > [a] 

append :: a - > DiffList a - > DiffList a
append x dl = \ xs - > dl xs ++ [x]

reverse':: [a] - > [a]
reverse'xs = foldr append(const [])xs $ []

请注意, foldr append(const [])xs 返回一个我们应用于 [] 来反转列表的函数。在这种情况下,我们给了 [a] - >类型的函数的别名。 [a] 称为 DiffList ,但它与写下

  append :: a  - > ([a]  - > [a]) - > [a]  - > [a] 

这是3个参数的函数。


Haskell newb here

I'm working on this problem in haskell:

(**) Eliminate consecutive duplicates of list elements.
If a list contains repeated elements they should be replaced with a single copy of the element. The order of the elements should not be changed.

Example:
* (compress '(a a a a b c c a a d e e e e))
(A B C A D E)

The solution (which I had to look up) uses foldr:

compress' :: (Eq a) => [a] -> [a]
compress' xs = foldr (\x acc -> if x == (head acc) then acc else x:acc) [last xs] xs

This foldr, according to the solution, takes two parameters, x and acc. It would seem like all foldr's take these parameters; is there any exception to this? Like a foldr that takes 3 or more? If not, is this convention redundant and can the formula be written with less code?

解决方案

foldr takes a function of 2 arguments, but this doesn't prevent it from taking a function of 3 arguments provided that function has the right type signature.

If we had a function

g :: x -> y -> z -> w

With

foldr :: (a -> b -> b) -> b -> [a] -> b

Where we want to pass g to foldr, then (a -> b -> b) ~ (x -> y -> z -> w) (where ~ is type equality). Since -> is right associative, this means we can write g's signature as

x -> y -> (z -> w)

and its meaning is the same. Now we've produced a function of two parameters that returns a function of one parameter. In order to unify this with the type a -> b -> b, we just need to line up the arguments:

a ->   |  x ->
b ->   |  y -> 
b      |  (z -> w)

This means that b ~ z -> w, so y ~ b ~ z -> w and a ~ x so g's type really has to be

g :: x -> (z -> w) -> (z -> w)

implying

foldr g :: (z -> w) -> [x] -> (z -> w)

This is certainly not impossible, although more unlikely. Our accumulator is a function instead, and to me this begs to be demonstrated with DiffLists:

type DiffList a = [a] -> [a]

append :: a -> DiffList a -> DiffList a
append x dl = \xs -> dl xs ++ [x]

reverse' :: [a] -> [a]
reverse' xs = foldr append (const []) xs $ []

Note that foldr append (const []) xs returns a function which we apply to [] to reverse a list. In this case we've given an alias to functions of the type [a] -> [a] called DiffList, but it's really no different than having written

append :: a -> ([a] -> [a]) -> [a] -> [a]

which is a function of 3 arguments.

这篇关于haskell的foldr总是采用双参数lambda吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-09 23:49