本文介绍了在哪里可以为BERT获得预训练的词embeddinngs?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我知道BERT的总词汇量为30522,其中包含一些单词和子单词.我想获取BERT的初始输入嵌入.因此,我的要求是获取尺寸为 [30522,768] 的表,我可以通过令牌ID对其进行索引以获取其嵌入.我在哪里可以找到这张桌子?

I know that BERT has total vocabulary size of 30522 which contains some words and subwords. I want to get the initial input embeddings of BERT. So, my requirement is to get the table of size [30522, 768] to which I can index by token id to get its embeddings. Where can I get this table?

推荐答案

BertModel具有 get_input_embeddings():

The BertModels have get_input_embeddings():

import torch
from transformers import BertModel, BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
bert = BertModel.from_pretrained('bert-base-uncased')

token_embedding = {token: bert.get_input_embeddings()(torch.tensor(id))  for token, id in tokenizer.get_vocab().items()}

print(len(token_embedding))
print(token_embedding['[CLS]'])

输出:

30522
tensor([ 1.3630e-02, -2.6490e-02, -2.3503e-02, -7.7876e-03,  8.5892e-03,
        -7.6645e-03, -9.8808e-03,  6.0184e-03,  4.6921e-03, -3.0984e-02,
         1.8883e-02, -6.0093e-03, -1.6652e-02,  1.1684e-02, -3.6245e-02,
         8.3482e-03, -1.2112e-03,  1.0322e-02,  1.6692e-02, -3.0354e-02,
        -1.2372e-02, -2.5173e-02, -8.9602e-03,  8.1994e-03, -2.0011e-02,
        -1.5901e-02, -3.8394e-03,  1.4241e-03,  7.0500e-03,  1.6092e-03,
        -2.7764e-03,  9.4931e-03, -2.2768e-02,  1.9317e-02, -1.3442e-02,
        -2.3763e-02, -1.4617e-02,  9.7735e-03, -2.2428e-03,  3.0642e-02,
         6.7829e-03, -2.6471e-03, -1.8553e-02, -1.2363e-02,  7.6489e-03,
        -2.5461e-03, -3.1498e-01,  6.3761e-03,  4.8914e-02, -7.7636e-03,
         6.0919e-02,  2.1346e-02, -3.9741e-02,  2.2853e-01,  2.6502e-02,
        -1.0144e-03, -7.8480e-03, -1.9995e-03,  1.7057e-02, -3.3270e-02,
         4.5421e-03,  6.1751e-03, -1.0077e-01, -2.0973e-02, -1.4512e-04,
        -9.6657e-03,  1.0871e-02, -1.4786e-02,  2.6437e-04,  2.1166e-02,
         1.6492e-02, -5.1928e-03, -1.1857e-02, -9.9159e-03, -1.4363e-02,
        -1.2405e-02, -1.2973e-02,  2.6778e-02, -1.0986e-02,  1.0572e-02,
        -2.5566e-02,  5.2494e-03,  1.5890e-02, -5.1504e-03, -7.5859e-03,
         2.0259e-02, -7.0155e-03,  1.6359e-02,  1.7487e-02,  5.4297e-03,
        -8.6403e-03,  2.8821e-02, -7.8964e-03,  1.9259e-02,  2.3868e-02,
        -4.3472e-03,  5.5662e-02, -2.1940e-02,  4.1779e-03, -5.7216e-03,
         2.6712e-02, -5.0371e-03,  2.4923e-02, -1.3429e-02, -8.4337e-03,
         9.8188e-02, -1.2940e-03,  1.2865e-02, -1.5930e-03,  3.6437e-03,
         1.5569e-02,  1.8620e-02, -9.0643e-03, -1.9740e-02,  1.0530e-02,
        -2.7359e-03, -7.5283e-03,  1.1492e-03,  2.6162e-03, -6.2757e-03,
        -8.6096e-03,  6.6221e-01, -3.2235e-03, -4.1309e-02,  3.3047e-03,
        -2.5040e-03,  1.2838e-04, -6.8073e-03,  6.0291e-03, -9.8468e-03,
         8.0641e-03, -1.9815e-03,  2.5801e-02,  5.7429e-03, -1.0712e-02,
         2.9176e-02,  5.9414e-03,  2.4795e-02, -1.7887e-02,  7.3183e-01,
         1.0964e-02,  5.9942e-03, -4.6157e-02,  4.0131e-02, -9.7481e-03,
        -8.9496e-01,  1.6385e-02, -1.9816e-03,  1.4691e-02, -1.9837e-02,
        -1.7611e-02, -4.5263e-04, -1.8605e-02, -1.5660e-02, -1.0709e-02,
         1.8016e-02, -3.4149e-03, -1.2632e-02,  4.2877e-03, -3.9169e-01,
         1.0016e-02, -1.0955e-02,  4.5133e-03, -5.1150e-03,  4.9968e-03,
         1.7852e-02,  1.1313e-02,  2.6519e-03,  3.3658e-01, -1.8168e-02,
         1.3170e-02,  7.3927e-03,  5.2521e-03, -9.6230e-03,  1.2844e-02,
         4.1554e-01, -9.7247e-03, -4.2439e-03,  5.5287e-04,  1.8271e-02,
        -1.3889e-03, -2.0502e-03, -8.1946e-03, -6.5979e-06, -7.2764e-04,
        -1.4625e-03, -6.9872e-03, -6.9633e-03, -8.0701e-03,  1.9936e-02,
         4.8370e-03,  8.6883e-03, -4.9246e-02, -2.0028e-02,  1.4124e-03,
         1.0444e-02, -1.1236e-02, -4.4654e-03, -2.0491e-02, -2.7654e-02,
        -3.7079e-02,  1.3215e-02,  6.9498e-02, -3.1109e-02,  7.0562e-03,
         1.0887e-02, -7.8090e-03, -1.0501e-02, -4.8735e-03, -6.8399e-04,
         1.4717e-02,  4.4342e-03,  1.6012e-02, -1.0427e-02, -2.5767e-02,
        -2.2699e-01,  8.6569e-02,  2.3453e-02,  4.6362e-02,  3.5609e-03,
         2.1353e-02,  2.3703e-02, -2.0252e-02,  2.1580e-02,  7.2652e-03,
         2.0933e-01,  1.2108e-02,  1.0869e-02,  7.0568e-03, -3.1132e-02,
         2.0505e-02,  3.2248e-03, -2.2724e-03,  5.5342e-03,  3.0563e-03,
         1.9542e-02,  1.2827e-03,  1.5952e-02, -1.5458e-02, -3.8455e-03,
        -4.9417e-03, -1.0446e-02,  7.0516e-03,  2.2467e-03, -9.3643e-03,
         1.9163e-02,  1.4239e-02, -1.5816e-02,  8.7413e-03,  2.4737e-02,
        -7.3777e-03, -4.0975e-02,  9.4948e-03,  1.4700e-02,  2.6819e-02,
         1.0706e-02,  1.0621e-02, -7.1816e-03, -8.5402e-03,  1.2261e-02,
        -4.8679e-03, -9.6136e-03,  7.8765e-04,  3.8504e-02, -7.7485e-03,
        -6.5018e-03,  3.4352e-03,  2.2931e-04,  5.7456e-03, -4.8441e-03,
        -9.0898e-03,  8.6298e-03,  5.4740e-03,  2.2274e-02, -2.1218e-02,
        -2.6795e-02, -3.5337e-03,  1.0785e-02,  1.2475e-02, -6.1160e-03,
         1.0729e-02, -9.7955e-03,  1.8543e-02, -6.0488e-03, -4.5744e-03,
         2.7089e-03,  1.5632e-02, -1.2928e-02, -3.0778e-03, -1.0325e-02,
        -7.9550e-03, -6.3065e-02,  2.1062e-02, -6.6717e-03,  8.4616e-03,
         1.4475e-02,  1.1477e-01, -2.2838e-02, -3.7491e-02, -3.6218e-02,
        -3.1994e-02, -8.9252e-03,  3.1720e-02, -1.1260e-02, -1.2980e-01,
        -1.0315e-03, -4.7242e-03, -2.0092e-02, -9.4521e-01, -2.2178e-02,
        -4.4297e-04,  1.9711e-02,  3.3402e-02, -1.0513e-02,  1.4492e-02,
        -1.9697e-02, -9.8452e-03, -1.7347e-02,  2.3472e-02,  7.6570e-02,
         1.9504e-02,  9.3617e-03,  8.2672e-03, -1.0471e-02, -1.9932e-03,
         2.0000e-02,  2.0485e-02,  1.0977e-02,  1.7720e-02,  1.3532e-02,
         7.3682e-03,  3.4906e-04,  1.8772e-03,  1.9976e-02, -3.2041e-02,
        -8.9169e-03,  1.2900e-02, -1.3331e-02,  6.6207e-03, -5.7063e-03,
        -1.1482e-02,  8.3907e-03, -6.4162e-03,  1.5816e-02,  7.8921e-03,
         4.4177e-03,  2.2568e-02,  1.0239e-02, -3.0194e-04,  1.3294e-02,
        -2.1606e-02,  3.8832e-03,  2.4475e-02,  4.3808e-02, -2.1031e-03,
        -1.2163e-02, -4.0786e-02,  1.5565e-02,  1.4750e-02,  1.6645e-02,
         2.8083e-02,  1.8920e-03, -1.4733e-04, -2.6208e-02,  2.3780e-02,
         1.8657e-04, -2.2931e-03,  3.0334e-03, -1.7294e-02, -2.3001e-02,
         8.6004e-03, -3.3497e-02,  2.5660e-02, -1.9225e-02, -2.7186e-02,
        -2.1020e-02, -3.5213e-02, -1.8228e-03, -8.2840e-03,  1.1212e-02,
         1.0387e-02, -3.4194e-01, -1.9705e-03,  1.1558e-02,  5.1976e-03,
         7.4498e-03,  5.7142e-03,  2.8401e-02, -7.7551e-03,  1.0682e-02,
        -1.2657e-02, -1.8065e-02,  2.6681e-03,  3.3947e-03, -4.5565e-02,
        -2.1170e-02, -1.7830e-02,  3.4679e-03, -2.2051e-02, -5.4176e-03,
        -1.1517e-02, -3.4155e-02, -3.0335e-03, -1.3915e-02,  6.2173e-03,
        -1.1101e-02, -1.5308e-02,  9.2188e-03, -7.5665e-03,  6.5685e-03,
         8.0935e-03,  3.1139e-03, -5.5047e-03, -3.1347e-02,  2.2140e-02,
         1.0865e-02, -2.7849e-02, -4.9580e-03,  1.8804e-03,  1.0007e-01,
        -1.8013e-03, -4.8792e-03,  1.5534e-02, -2.0179e-02, -1.2351e-02,
        -1.3871e-02,  1.1439e-02, -9.0208e-03,  1.2580e-02, -2.5973e-02,
        -2.0398e-02, -1.9464e-03,  4.3189e-03,  2.0707e-02,  5.0029e-03,
        -1.0679e-02,  1.2298e-02,  1.0269e-02,  2.2228e-02,  2.9754e-02,
        -2.6392e-03,  1.9286e-02, -1.5137e-02,  2.1914e-01,  1.3030e-02,
        -7.4460e-03, -9.6818e-04,  2.9736e-02,  9.8722e-03, -5.6688e-03,
         4.2518e-03,  1.8941e-02, -6.3909e-03,  8.0590e-03, -6.7893e-03,
         6.0878e-03, -5.3970e-03,  7.5776e-04,  1.1374e-03, -5.0035e-03,
        -1.6159e-03,  1.6764e-02,  9.1251e-03,  1.3020e-02, -1.0368e-02,
         2.2141e-02, -2.5411e-03, -1.5227e-02,  2.3444e-02,  8.4076e-04,
        -1.1465e-01,  2.7017e-03, -4.4961e-03,  2.9762e-04, -3.9612e-03,
         8.9038e-05,  2.8683e-02,  5.0068e-03,  1.6509e-02,  7.8983e-04,
         5.7728e-03,  3.2685e-02, -1.0457e-01,  1.2989e-02,  1.1278e-02,
         1.1943e-02,  1.5258e-02, -6.2411e-04,  1.0682e-04,  1.2087e-02,
         7.2984e-03,  2.7758e-02,  1.7572e-02, -6.0345e-03,  1.7211e-02,
         1.4121e-02,  6.4663e-02,  9.1813e-03,  3.2555e-03, -3.2667e-02,
         2.9132e-02, -1.7770e-02,  1.5302e-03, -2.9944e-02, -2.0706e-02,
        -3.6528e-03, -1.5497e-02,  1.5223e-02, -1.4751e-02, -2.2381e-02,
         6.9636e-03, -8.0838e-03, -2.4583e-03, -2.0677e-02,  8.8132e-03,
        -6.9554e-04,  1.6965e-02,  1.8535e-01,  3.5843e-04,  1.0812e-02,
        -4.2391e-03,  8.1779e-03,  3.4144e-02, -1.8996e-03,  2.9939e-03,
         3.6898e-04, -1.0144e-02, -5.7416e-03, -5.7676e-03,  1.7565e-01,
        -1.5793e-03, -2.6617e-02, -1.2572e-02,  3.0421e-04, -1.2132e-02,
        -1.4168e-02,  1.2154e-02,  8.4700e-03, -1.6284e-02,  2.6983e-03,
        -6.8554e-03,  2.7829e-01,  2.4060e-02,  1.1130e-02,  7.6095e-04,
         3.1341e-01,  2.1668e-02,  1.0277e-02, -3.0065e-02, -8.3565e-03,
         5.2488e-03, -1.1287e-02, -1.8266e-02,  1.1814e-02,  1.2662e-02,
         2.9036e-04,  7.0254e-04, -1.4084e-02,  1.2925e-02,  3.9504e-03,
        -7.9568e-03,  3.2794e-02,  7.3839e-03,  2.4609e-02,  9.6109e-03,
        -8.7206e-03,  9.2571e-03, -3.5850e-03, -8.9996e-03,  2.3120e-03,
        -1.8475e-02, -1.9610e-02,  1.1994e-02,  6.7156e-03,  1.9903e-02,
         3.0703e-02, -4.9538e-03, -6.1673e-02, -6.4986e-03, -2.1317e-02,
        -3.3650e-03,  2.3200e-03, -6.2224e-03,  3.7458e-03,  1.1542e-02,
        -1.0181e-02, -8.4711e-03,  1.1603e-02, -5.6247e-03, -1.0220e-02,
        -8.6501e-04, -1.2285e-02, -8.7487e-03, -1.1265e-02,  1.6322e-02,
         1.5160e-02,  1.8882e-02,  5.1557e-03, -8.8616e-03,  4.2153e-03,
        -1.9450e-02, -8.7365e-03, -9.7867e-03,  1.1667e-02,  5.0613e-03,
         2.8221e-03, -7.1795e-03,  9.3306e-03, -4.9663e-02,  1.7708e-02,
        -2.0959e-02, -3.3989e-02,  2.2581e-03,  5.1748e-03, -1.0133e-01,
         2.1052e-03,  5.5644e-03,  1.3607e-03,  8.8388e-03,  1.0244e-02,
        -3.8072e-03,  5.9209e-03,  6.7993e-03,  1.1594e-02, -1.1802e-02,
        -2.4233e-03, -5.1504e-03, -1.1903e-02,  1.4075e-02, -4.0701e-03,
        -2.9465e-02, -1.7579e-03,  4.3654e-03,  1.0429e-02,  3.7096e-02,
         8.6493e-03,  1.5871e-02,  1.8034e-02, -3.2165e-03, -2.1941e-02,
         2.6274e-02, -7.6941e-03, -5.9618e-03, -1.4179e-02,  8.0281e-03,
         1.1293e-02, -6.6936e-05,  1.2899e-02,  1.0056e-02, -6.3919e-04,
         2.0299e-02,  3.1528e-03, -4.8988e-03,  3.2754e-03, -1.1003e-01,
         1.8414e-02,  2.2272e-03, -2.2185e-02, -4.8672e-03,  1.9643e-03,
         3.0928e-02, -8.9599e-03, -1.1446e-02, -1.3794e-02,  7.1943e-03,
        -5.8965e-03,  2.2605e-03, -2.6114e-02, -5.6616e-03,  6.5073e-03,
         9.2219e-02, -6.7243e-03,  4.4427e-04,  7.2846e-03, -1.1021e-02,
         7.8802e-04, -3.8878e-03,  1.0489e-02,  9.2883e-03,  1.8895e-02,
         2.1808e-02,  6.2590e-04, -2.6519e-02,  7.0343e-04, -2.9067e-02,
        -9.1515e-03,  1.0418e-03,  8.3222e-03, -8.7548e-03, -2.0637e-03,
        -1.1450e-02, -8.8985e-04, -4.4062e-03,  2.3629e-02, -2.7221e-02,
         3.2008e-02,  6.6325e-03, -1.1302e-02, -1.0138e-03, -1.6902e-01,
        -8.4473e-03,  2.8536e-02,  1.4117e-03, -1.2136e-02, -1.4781e-02,
         4.9960e-03,  3.3916e-02,  5.2710e-03,  1.7382e-02, -4.6315e-03,
         1.1680e-02, -9.1395e-03,  1.8310e-02,  1.2321e-02, -2.4871e-02,
         1.1535e-02,  5.0308e-03,  5.5028e-03, -7.2184e-03, -5.5210e-03,
         1.7085e-02,  5.7236e-03,  1.7463e-03,  1.9969e-03,  6.1670e-03,
         2.9347e-03,  1.3946e-02, -1.9984e-03,  1.0091e-02,  1.0388e-03,
        -6.1902e-03,  3.0905e-02,  6.6038e-03, -9.1223e-02, -1.8411e-02,
         5.4185e-03,  2.4396e-02,  1.5696e-02, -1.2742e-02,  1.8126e-02,
        -2.6138e-02,  1.1170e-02, -1.3058e-02, -1.9386e-02, -5.9828e-03,
         1.9176e-02,  1.9962e-03, -2.1538e-03,  3.3003e-02,  1.8407e-02,
        -5.9498e-03, -3.2533e-03, -1.8917e-02, -1.5897e-02, -4.7057e-03,
         5.4162e-03, -3.0037e-02,  8.6773e-03, -1.7942e-03,  6.6826e-03,
        -1.1929e-02, -1.4076e-02,  1.6709e-02,  1.6860e-03, -3.3842e-03,
         8.6805e-03,  7.1340e-03,  1.5147e-02], grad_fn=<EmbeddingBackward>)

这篇关于在哪里可以为BERT获得预训练的词embeddinngs?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-09 23:10