本文介绍了Java中的非常大斐波那契的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试快速计算较大的斐波那契数.这是我的代码.对于100万以上的数字,速度太慢了,如何改善?
I am trying to rapidly calculate large Fibonacci numbers. Here is my code. It is prohibitively slow for numbers above 1 million, how can it be improved?
public static BigInteger fib(BigInteger n) {
int k = n.intValue();
BigInteger ans = null;
if(k == 0) {
ans = new BigInteger("0");
} else if(Math.abs(k) <= 2) {
ans = new BigInteger("1");
} else {
BigInteger km1 = new BigInteger("1");
BigInteger km2 = new BigInteger("1");
for(int i = 3; i <= Math.abs(k); ++i) {
ans = km1.add(km2);
km2 = km1;
km1 = ans;
}
}
if(k<0 && k%2==0) { ans = ans.negate(); }
return ans;
}
Binet运作良好.谢谢你们!
Binet's worked well. Thanks guys!
推荐答案
一种方法是计算2x2矩阵的(N-1)th
幂:
One way is to calculate the (N-1)th
power of the 2x2 matrix:
A = ((1, 1), (1, 0))
那么我们就有
Fib(n) = A^(n-1)[0][0], for n >= 1
使用A的幂-power-function-powint-int>通过平方求幂
And the power of matrix A
can be calculated efficiently using Exponentiation by squaring
这篇关于Java中的非常大斐波那契的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!