本文介绍了自动将p值添加到构面图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我使用以下命令在下面创建了一个facet图:

  ggplot(data,aes(factor(Length), 
+ geom_boxplot(fill =grey90),
+ coord_cartesian(ylim = c(-5,5))+ facet_grid(X〜Modification)

有没有一种方法可以为每个boxplot计算p值并将它们添加为每个boxplot上方的geom_text。我想计算一个t检验并且比较y = 0。



我的数据如下所示:

  X长度logFC修改
Daub 26 -0.7307060811 NTA
涂抹22 -0.3325621272 NTA
涂抹22 -2.0579390395 NTA
涂抹25 2.7199391457 NTA
涂抹23 -0.0009869389 NTA
涂抹25 - 0.3318842493 NTA
...


我的错误信息:

pre> > (1L,1L,1L,1L,1L,1L,
+ 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
+ 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
+ 1L,1L,1L,2L,2L,2L,2L,2L,2L,2L,2L ,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L, $ b + 2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L, 2L,2L,2 L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,3L,3L,2L,2L,2L,2L, ,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L, ,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L, 3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L, 3L,3L,3L,3L,
+ 3L,3L,3L,3L,3L,3L,3L,3L,3L),标签= c(Daub,Marie,
+ Meister),class =factor),Length = c(26L,22L,22L,25L,
+ 23L,25L,23L,25L,24L,23L,24L,26L,24L,21L,20L,21L,22L,
+ 22L,21L,21L,21L,22L,21L,22L,21L,21L,20L ,20L,21L,25L,
+ 20L,22L,24L,22L,23L,24L,23L,23L,22L,22L,22L,22L,21L,
+ 19L,21L,20L,20L ,20L,19L,19L,19L,22L,23L,23L,22L,23L,
+ 22L,20L,21L,24L,24L,24L,25L,24L,21L,20L,23L,23L,
+ 23L,23L,24L,20L,21L,22L,24L,23L,22L,23L,22L,23L,23L,
+ 19L,21L,23L,24L,22L,23L,23L,21L,22L,20L ,22L,23L,25L,
+ 22L,22L,23L,22L,23L,25L,25L,24L,24L,23L,22L,22L,25L,
+ 23L,24L,23L,23L ,22L,22L,25L,23L,22L,25L,21L,19L,21L,
+ 23L,22L,22L,20L,20L,20L,23L,22L,21L,21L,23L,23L,23L,
+ 21L,25L,23L,24L,24L,23L,23L,23L,21L,22L,21L,21L,23L,
+ 23L,22L,22L,21L,22L,22L,25L, 24L,24L,22L,24L,24L,23L,
+ 22L,21L,22L,23L,20L,22L,23L,24L,25L,24L,25L,22L,23L, 21L,25L,23L,19L,21L,21L,22L,20L,21L,18L,20L,20L,
+ 21L,20L, 23L,19L,19L,22L,22L,22L,22L,22L,21L,22L,24L,
+ 20L,21L,22L,22L,21L,21L,21L,21L,21L,23L,23L,23L ,25L,
+ 25L,25L,23L,24L,24L,24L,24L,24L,24L,25L,25L),logFC = c(-0.7307060811,
+ -0.3325621272,-2.0579390395,2.7199391457 ,-0.0009869389,-0.3318842493,
+ -2.192219 9037,-1.8907961065,-1.9059255014,-0.2815081355,-0.2040330335,
+ 3.661469505,0.6489955587,-0.0261245467,-1.4312409441,-1.1199604078,
+ -1.6528592355,-2.8208936451,-0.7207549269,-1.6528592355, - 1.2540377475,
+ -2.1088724443,-2.1088724443,-1.5556550771,-1.5556550771,-0.2899601367,
+ 0.36449851,-1.7787723427,-1.5556550771,-1.5556550771,-1.5556550771,
+ -2.1092566794,0.0417776477,-3.0768675589,-4.2573082637,-1.5556550771,
+ -1.8493703566,-0.7310899725,-2.8201262449,-0.7203706918, -2.1088724443,
+ -3.5714 106365,-1.5556550771,-1.2144625017,1.6608916211,-0.3147141406,
+ 1.2344697053,1.2303596917,1.2138067782,0.9409846988,0.5270928206,
+ -1.0435216994,-1.4320081419,-1.1644217165,-1.1478237529,-0.9941196613,
+ 0.0762668692,1.0076747803,0.0679302699,-0.4852244221,0.7772467457,
+ 0.4902414285,1.6172022872,0.5270928206,-1.5403877099,-0.3322684844,
+ 0.0965099283,0.8067662712,-0.3322684844,-1.2928579903,0.6067208763,
+ 0.0247576412,-0.0291609233,-0.4737578429,0.0743062433,0.1126554177,
+ -0.0156954476,1。 1069888258,-0.956482117,-0.2829742145,0.8511530937,
+ -0.1571780266,-1.2033199926,-1.1883052896,-0.0619556757,-0.7813018565,
+ 2.2467468049,2.8382841074,0.5658773933,-0.4461699001,-0.7409548873,
+ -0.992979577,-1.0966445642,-0.8035321174,0.4586171366,-0.2760821893,
+ 0.0585422656,0.0328935437,0.33858231436,-0.4374188039,1.166538873,
+ -1.6539303789,0.2027459981,-0.2193112677,-0.3939953745,-1.6726108643,
+ 1.1518720793,2.2517568637,-0.561147283,-2.1625509666,-1.65562751,
+ -0.9048469063,-1.07593883 41,0.4938537603,1.8754485108,-1.5944759871,
+ 1.0688499798,2.6659945275,-1.908097968,-1.9214219995,-2.9675169126,
+ 0.0365892303,-0.8345258687,-1.0535567925,-2.0036191122,-1.6843791204,
+ -2.5554312825,-1.5778268888,-1.576142107,-0.9398408101,2.4453250675,
+ -1.5434092122,-0.794414515,-0.6200158513,0.5556353409,-1.0772272444,
+ -0.8720587283,-0.8082062813,-0.7353916189,0.1072543637,0.5658773933,
+ 0.13043531,-0.0154958912,-0.868710614,-0.1922496916,1.0682890388,
+ -1.673413308,-0.9581901784,-1.95 75141988,-1.8973257122,1.4967046965,
+ -2.456068976,-1.4577030552,-4.2692094743,-1.9124787897,-1.4993411082,
+ -0.6409837734,0.6369441273,-0.9960964825,-5.9703084924,-1.97960268,
+ -1.2422870608,-1.5170124157,-1.9021683731,3.4029417731,0.1812972171,
+ -1.6370149729,-1.749015407,-2.1677341592,-1.4942545905,-1.1137758818,
+ -1.2428452903,-1.3014446584,0.0287537402,-0.8721416458,-2.4062762035,
+ -4.0278899462,-2.2229120764,-1.5950383235,-3.6098212725 ,-2.5979636046,
+ 0.3631424981,1.1377073609,0.51514 59494,0.0640542096,-0.7715375264,
+ -1.0361077101,-0.2462753448,-2.3058140776,-0.0847179004,-0.518970228,
+ 0.8519432911,1.9516260022,-0.5706154628,1.240812729,0.3336736001,
+ 2.2509464232, -0.322918086,-4.4019571741,-0.5618441487,3.4700721641,
+ -3.9220135953,-2.1968879291,-0.1362995026,2.164094913,-1.0688563363,
+ 0.4302583643,2.6411096027,-3.020513717,-1.53​​95519303,-2.2219591633,
+ -3.8891956255,0.9602784132,-0.6470571429,1.853151793,-0.3271268741,
+ -0.9870872828,-2.516770073,-1.2898235194,-1.7 (1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,5L,5L,5L,5L, b $ b + 5L,5L,5L,5L,5L,5L,5L,5L,5L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L, 1L,1L,1L,1L,2L,2L,2L,2L,2L, 1L,1L,1L,
+ 1L,1L,1L,1L,1L,1L,1L,5L,5L,5L,5L,5L,5L,5L,5L,5L,
+ 5L,5L,5L,5L, ,4L,4L,4L,4L,4L,4L,4L,4L,4L,
+ 4L,4L,4L,4L,4L,3L,3L,3L,3L,3L, 3L,3L,3L,
+ 1L,1L,1L,1L,1L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L, ,1L,1L,1L,1L,1L,1L,1L,1L,1L,
+ 5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,
+ 4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,3L,3L,
+ 3L,3L,3L,3L,3L,3L, ,3L,3L,3L,3L,3L,3L,3L,3L,2L,
+ 2L,2L,2L,2L,2L,2L,2L,2L,2L,2L, 2L),。标签= c(NTA,
+ t3-d,t3-u,t5-d,t5-u),class =factor)),.Names = c(Experiment,
+Len​​gth ,logFC,Modification),class =data.frame,row.names = c(NA,
+ -223L))
>库(dplyr)
> (p(n)> 1)%>%
+总结(p.value< - 数据%>%group_by(实验,修改,长度)%>%
+ (t.test(logFC,mu = 0)$ p.value))
t.test中的错误(logFC,mu = 0):找不到对象'logFC'


解决方案

您可以通过将数据汇总到p值表中来完成此操作。这可以使用dplyr完成:

  library(dplyr)
pvalues< - data%>%group_by(实验,修改,长度)%>%
filter(n()> 1)%>%
总结(p.value =(t.test(logFC,mu = 0)$ p ($($($> $>))

)是为了摆脱任何大小为1的组,无法计算p值)。这会产生如下表格:

 #实验修改长度p.value 
#1涂抹NTA 22 0.3980043
#2涂抹NTA 23 0.3535590
#3涂抹NTA 24 0.5831962
#4涂抹NTA 25 0.9137644
#5涂抹NTA 26 0.6254004
#6涂抹t3-d 20 0.1493108

现在您可以使用 geom_text layer,选择一些y,如 y = 3

 <$ c 
$ b $ ggplot(data,aes(factor(Length),logFC))+ geom_boxplot(fill =grey90)+
coord_cartesian(ylim = c( - 5,5))+ facet_grid(Experiment〜Modification)+
geom_text(aes(y = 3,label = p.value),data = pvalues,size = 1)

您可能需要操作 geom_text 的大小(以及可能的角度)情节reada BLE。还要注意,由于您正在执行很多测试,因此您应该查看调整后的p值而不是原始p值。您可以使用

  pvalues<  -  pvalues%>%mutate(p.adjusted = p.adjust(p .value,method =bonferroni))

函数 format.pval 也会派上用场,特别是如果你的某些p值接近于0的话。


I have made a facet plot below using the following command:

    ggplot(data, aes(factor(Length),logFC)),
 + geom_boxplot(fill = "grey90"),
 +  coord_cartesian(ylim=c(-5,5)) + facet_grid(X~Modification)

Is there a way to compute p-values for each boxplot and add them as geom_text above each boxplot. I want to compute a t-test and compare against y=0.

My data looks like this:

    X Length          logFC     Modification
 Daub     26    -0.7307060811           NTA
 Daub     22    -0.3325621272           NTA
 Daub     22    -2.0579390395           NTA
 Daub     25     2.7199391457           NTA
 Daub     23    -0.0009869389           NTA
 Daub     25    -0.3318842493           NTA
 ...

My error message:

> data <- structure(list(Experiment = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
+                                                 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Daub", "Marie",
+                                                                                                 "Meister"), class = "factor"), Length = c(26L, 22L, 22L, 25L,
+                                                                                                                                           23L, 25L, 23L, 25L, 24L, 23L, 24L, 26L, 24L, 21L, 20L, 21L, 22L,
+                                                   22L, 21L, 21L, 21L, 22L, 21L, 22L, 21L, 21L, 20L, 20L, 21L, 25L,
+                                                                                                                                           20L, 22L, 24L, 22L, 23L, 24L, 23L, 23L, 22L, 22L, 22L, 22L, 21L,
+                                                                                                                                           19L, 21L, 20L, 20L, 20L, 19L, 19L, 19L, 22L, 23L, 23L, 22L, 23L,
+                                                                                                                                           22L, 20L, 21L, 24L, 24L, 24L, 25L, 24L, 21L, 20L, 23L, 23L, 20L,
+                                                                                                                                           23L, 23L, 24L, 20L, 21L, 22L, 24L, 23L, 22L, 23L, 22L, 23L, 23L,
+                                                                                                                                           19L, 21L, 23L, 24L, 22L, 23L, 23L, 21L, 22L, 20L, 22L, 23L, 25L,
+                                                                                                                                           22L, 22L, 23L, 22L, 23L, 25L, 25L, 24L, 24L, 23L, 22L, 22L, 25L,
+                                                                                                                                           23L, 24L, 23L, 23L, 22L, 22L, 25L, 23L, 22L, 25L, 21L, 19L, 21L,
+                                                                                                                                           23L, 22L, 22L, 20L, 20L, 20L, 23L, 22L, 21L, 21L, 23L, 23L, 23L,
+                                                                                                                                           21L, 25L, 23L, 24L, 24L, 23L, 23L, 23L, 21L, 22L, 21L, 21L, 23L,
+                                                                                                                                           23L, 22L, 22L, 21L, 22L, 22L, 25L, 24L, 24L, 22L, 24L, 24L, 23L,
+                                                                                                                                           22L, 21L, 22L, 23L, 20L, 22L, 23L, 24L, 25L, 24L, 25L, 22L, 23L,
+                                                                                                                                           24L, 21L, 25L, 23L, 19L, 21L, 21L, 22L, 20L, 21L, 18L, 20L, 20L,
+                                                                                                                                           21L, 20L, 23L, 19L, 19L, 22L, 22L, 22L, 22L, 22L, 21L, 22L, 24L,
+                                                                                                                                           20L, 21L, 22L, 22L, 21L, 21L, 21L, 21L, 21L, 23L, 23L, 23L, 25L,
+                                                                                                                                           25L, 25L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 25L, 25L), logFC = c(-0.7307060811,
+                                                                                                                                                                                                             -0.3325621272, -2.0579390395, 2.7199391457, -0.0009869389, -0.3318842493,
+                                                                                                                                                                                                             -2.1922199037, -1.8907961065, -1.9059255014, -0.2815081355, -0.2040330335,
+                                                                                                                                                                                                             3.661469505, 0.6489955587, -0.0261245467, -1.4312409441, -1.1199604078,
+                                                                                                                                                                                                             -1.6528592355, -2.8208936451, -0.7207549269, -1.6528592355, -1.2540377475,
+                                                                                                                                                                                                             -2.1088724443, -2.1088724443, -1.5556550771, -1.5556550771, -0.2899601367,
+                                                                                                                                                                                                             0.36449851, -1.7787723427, -1.5556550771, -1.5556550771, -1.5556550771,
+                                                                                                                                                                                                             -2.1092566794, 0.0417776477, -3.0768675589, -4.2573082637, -1.5556550771,
+                                                                                                                                                                                                             -1.8493703566, -0.7310899725, -2.8201262449, -0.7203706918, -2.1088724443,
+                                                                                                                                                                                                             -3.5714106365, -1.5556550771, -1.2144625017, 1.6608916211, -0.3147141406,
+                                                                                                                                                                                                             1.2344697053, 1.2303596917, 1.2138067782, 0.9409846988, 0.5270928206,
+                                                                                                                                                                                                             -1.0435216994, -1.4320081419, -1.1644217165, -1.1478237529, -0.9941196613,
+                                                                                                                                                                                                             0.0762668692, 1.0076747803, 0.0679302699, -0.4852244221, 0.7792467457,
+                                                                                                                                                                                                             0.4902414285, 1.6172022872, 0.5270928206, -1.5403877099, -0.3322684844,
+                                                                                                                                                                                                             0.0965099283, 0.8067662712, -0.3322684844, -1.2928579903, 0.6067208763,
+                                                                                                                                                                                                             0.0247576412, -0.0291609233, -0.4737578429, 0.0743062433, 0.1126554177,
+                                                                                                                                                                                                             -0.0156954476, 1.1069888258, -0.956482117, -0.2829742145, 0.8511530937,
+                                                                                                                                                                                                             -0.1571780266, -1.2033199926, -1.1883052896, -0.0619556757, -0.7813018565,
+                                                                                                                                                                                                             2.2467468049, 2.8382841074, 0.5658773933, -0.4461699001, -0.7409548873,
+                                                                                                                                                                                                             -0.992979577, -1.0966445642, -0.8035321174, 0.4586171366, -0.2760821893,
+                                                                                                                                                                                                             0.0585422656, 0.0328935437, 0.3858231436, -0.4374188039, 1.1166538873,
+                                                                                                                                                                                                             -1.6539303789, 0.2027459981, -0.2193112677, -0.3939953745, -1.6726108643,
+                                                                                                                                                                                                             1.1518720793, 2.2517568637, -0.561147283, -2.1625509666, -1.65562751,
+                                                                                                                                                                                                             -0.9048469063, -1.0759388341, 0.4938537603, 1.8754485108, -1.5944759871,
+                                                                                                                                                                                                             1.0688499798, 2.6559945275, -1.908097968, -1.9214219995, -2.9675169126,
+                                                                                                                                                                                                             0.0365892303, -0.8345258687, -1.0535567925, -2.0036191122, -1.6843791204,
+                                                                                                                                                                                                             -2.5554312825, -1.5778268888, -1.576142107, -0.9398408101, 2.4453250675,
+                                                                                                                                                                                                             -1.5434092122, -0.794414515, -0.6200158513, 0.5556353409, -1.0772272444,
+                                                                                                                                                                                                             -0.8720587283, -0.8082062813, -0.7353916189, 0.1072543637, 0.5658773933,
+                                                                                                                                                                                                             0.13043531, -0.0154958912, -0.868710614, -0.1922496916, 1.0682890388,
+                                                                                                                                                                                                             -1.673413308, -0.9581901784, -1.9575141988, -1.8973257122, 1.4967046965,
+                                                                                                                                                                                                             -2.456068976, -1.4577030552, -4.2692094743, -1.9124787897, -1.4993411082,
+                                                                                                                                                                                                             -0.6409837734, 0.6369441273, -0.9960964825, -5.9703084924, -1.97960268,
+                                                                                                                                                                                                             -1.2422870608, -1.5170124157, -1.9021683731, 3.4029417731, 0.1812972171,
+                                                                                                                                                                                                             -1.6370149729, -1.749015407, -2.1677341592, -1.4942545905, -1.1137758818,
+                                                                                                                                                                                                             -1.2428452903, -1.3014446584, 0.0287537402, -0.8721416458, -2.4062762035,
+                                                                                                                                                                                                             -4.0278899462, -2.2229120764, -1.5950383235, -3.6098212725, -2.5979636046,
+                                                                                                                                                                                                             0.3631424981, 1.1377073609, 0.5151459494, 0.0640542096, -0.7715375264,
+                                                                                                                                                                                                             -1.0361077101, -0.2462753448, -2.3058140776, -0.0847179004, -0.518970228,
+                                                                                                                                                                                                             0.8519432911, 1.9516260022, -0.5706154628, 1.240812729, 0.336736001,
+                                                                                                                                                                                                             2.2509464232, -0.322918086, -4.4019571741, -0.5618441487, 3.4700721641,
+                                                                                                                                                                                                             -3.9220135953, -2.1968879291, -0.1362995026, 2.164094913, -1.0688563363,
+                                                                                                                                                                                                             0.4302583643, 2.6411096027, -3.020513717, -1.5395519303, -2.2219591633,
+                                                                                                                                                                                                             -3.8891956255, 0.9602784132, -0.6470571429, 1.853151793, -0.3271268741,
+                                                                                                                                                                                                             -0.9870872828, -2.516770073, -1.2898235194, -1.7246627604, -0.61328192,
+                                                                                                                                                                                                             -3.5457352204, -2.5068717697), Modification = structure(c(1L,
+                                                                                                                                                                                                                                                                       1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L,
+                                                                                                                                                                                                                                                                       4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
+                                                                                                                                                                                                                                                                       5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                                                                                                                                                                                                                                       3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                                                                                                                                                                                                                                       2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                                                                                                                                                                                                                                       1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
+                                                                                                                                                                                                                                                                       5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
+                                                                                                                                                                                                                                                                       4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
+                                                                                                                                                                                                                                                                       3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
+                                                                                                                                                                                                                                                                       2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
+                                                                                                                                                                                                                                                                       5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
+                                                                                                                                                                                                                                                                       4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L,
+                                                                                                                                                                                                                                                                       3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
+                                                                                                                                                                                                                                                                       2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("NTA",
+                                                                                                                                                                                                                                                                                                                                           "t3-d", "t3-u", "t5-d", "t5-u"), class = "factor")), .Names = c("Experiment",
+                                                                                                                                                                                                                                                                                                                                                                                                           "Length", "logFC", "Modification"), class = "data.frame", row.names = c(NA,
+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -223L))
> library(dplyr)
> pvalues <- data %>% group_by(Experiment, Modification, Length) %>%
+ filter(n() > 1) %>%
+ summarize(p.value = (t.test(logFC, mu = 0)$p.value))
Error in t.test(logFC, mu = 0) : object 'logFC' not found
解决方案

You can do this by summarizing the data into a table of p-values. This can be done using dplyr:

library(dplyr)
pvalues <- data %>% group_by(Experiment, Modification, Length) %>%
    filter(n() > 1) %>%
    summarize(p.value = (t.test(logFC, mu = 0)$p.value))

(The line filter(n() > 1) is to get rid of any groups of size 1, for which a p-value cannot be calculated). This produces a table that looks like:

# Experiment Modification Length   p.value
# 1       Daub          NTA     22 0.3980043
# 2       Daub          NTA     23 0.3535590
# 3       Daub          NTA     24 0.5831962
# 4       Daub          NTA     25 0.9137644
# 5       Daub          NTA     26 0.6254004
# 6       Daub         t3-d     20 0.1493108

Now you can add that text to your plot using a geom_text layer, choosing some y such as y = 3:

library(ggplot2)

ggplot(data, aes(factor(Length),logFC)) + geom_boxplot(fill = "grey90") +
    coord_cartesian(ylim=c(-5,5)) + facet_grid(Experiment~Modification) +
    geom_text(aes(y = 3, label = p.value), data = pvalues, size = 1)

You will probably have to manipulate the size (and possibly angle) of your geom_text to make the plot readable. Note also that since you are performing many tests, you should probably look at the adjusted p-values rather than the raw p-values. You can compute that column with

pvalues <- pvalues %>% mutate(p.adjusted = p.adjust(p.value, method = "bonferroni"))

The function format.pval will also come in handy, especially if some of your p-values are close to 0.

这篇关于自动将p值添加到构面图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-12 14:43