本文介绍了CountVectorizer:AttributeError:'numpy.ndarray'对象没有属性'lower'的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个一维数组,每个元素中都有大字符串.我正在尝试使用CountVectorizer将文本数据转换为数值向量.但是,我收到一条错误消息:

I have a one-dimensional array with large strings in each of the elements. I am trying to use a CountVectorizer to convert text data into numerical vectors. However, I am getting an error saying:

AttributeError: 'numpy.ndarray' object has no attribute 'lower'

mealarray在每个元素中都包含大字符串.有5000个这样的样本.我正试图将其向量化,如下所示:

mealarray contains large strings in each of the elements. There are 5000 such samples. I am trying to vectorize this as given below:

vectorizer = CountVectorizer(
    stop_words='english',
    ngram_range=(1, 1),  #ngram_range=(1, 1) is the default
    dtype='double',
)
data = vectorizer.fit_transform(mealarray)

完整的堆栈跟踪:

File "/Library/Python/2.7/site-packages/sklearn/feature_extraction/text.py", line 817, in fit_transform
    self.fixed_vocabulary_)
  File "/Library/Python/2.7/site-packages/sklearn/feature_extraction/text.py", line 748, in _count_vocab
    for feature in analyze(doc):
  File "/Library/Python/2.7/site-packages/sklearn/feature_extraction/text.py", line 234, in <lambda>
    tokenize(preprocess(self.decode(doc))), stop_words)
  File "/Library/Python/2.7/site-packages/sklearn/feature_extraction/text.py", line 200, in <lambda>
    return lambda x: strip_accents(x.lower())
AttributeError: 'numpy.ndarray' object has no attribute 'lower'

推荐答案

检查mealarray的形状.如果参数 fit_transform 是字符串数组,它必须是一维数组. (也就是说,mealarray.shape的格式必须为(n,).)例如,如果mealarray具有诸如(n, 1)的形状,则会出现无属性"错误.

Check the shape of mealarray. If the argument to fit_transform is an array of strings, it must be a one-dimensional array. (That is, mealarray.shape must be of the form (n,).) For example, you'll get the "no attribute" error if mealarray has a shape such as (n, 1).

您可以尝试类似

data = vectorizer.fit_transform(mealarray.ravel())

这篇关于CountVectorizer:AttributeError:'numpy.ndarray'对象没有属性'lower'的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-22 16:58