本文介绍了(Python-sklearn)如何通过gridsearchcv将参数传递给自定义ModelTransformer类的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

下面是我的管道,似乎无法使用ModelTransformer类将参数传递给我的模型,我从链接()

Below is my pipeline and it seems that I can't pass the parameters to my models by using the ModelTransformer class, which I take it from the link (http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html)

该错误消息对我来说很有意义,但我不知道如何解决.任何想法如何解决这个问题?谢谢.

The error message makes sense to me, but I don't know how to fix this. Any idea how to fix this? Thanks.

# define a pipeline
pipeline = Pipeline([
('vect', DictVectorizer(sparse=False)),
('scale', preprocessing.MinMaxScaler()),
('ess', FeatureUnion(n_jobs=-1,
                     transformer_list=[
     ('rfc', ModelTransformer(RandomForestClassifier(n_jobs=-1, random_state=1,  n_estimators=100))),
     ('svc', ModelTransformer(SVC(random_state=1))),],
                     transformer_weights=None)),
('es', EnsembleClassifier1()),
])

# define the parameters for the pipeline
parameters = {
'ess__rfc__n_estimators': (100, 200),
}

# ModelTransformer class. It takes it from the link
(http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html)
class ModelTransformer(TransformerMixin):
    def __init__(self, model):
        self.model = model
    def fit(self, *args, **kwargs):
        self.model.fit(*args, **kwargs)
        return self
    def transform(self, X, **transform_params):
        return DataFrame(self.model.predict(X))

grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, refit=True)

错误消息:ValueError:估算器ModelTransformer的参数n_estimators无效.

Error Message:ValueError: Invalid parameter n_estimators for estimator ModelTransformer.

推荐答案

GridSearchCV对嵌套对象具有特殊的命名约定.在您的情况下,ess__rfc__n_estimators代表ess.rfc.n_estimators,并且根据pipeline的定义,它指向

GridSearchCV has a special naming convention for nested objects. In your case ess__rfc__n_estimators stands for ess.rfc.n_estimators, and, according to the definition of the pipeline, it points to the property n_estimators of

ModelTransformer(RandomForestClassifier(n_jobs=-1, random_state=1,  n_estimators=100)))

很明显,ModelTransformer实例没有这种属性.

Obviously, ModelTransformer instances don't have such property.

修复很容易:为了访问ModelTransformer的基础对象,需要使用model字段.因此,网格参数变为

The fix is easy: in order to access underlying object of ModelTransformer one needs to use model field. So, grid parameters become

parameters = {
  'ess__rfc__model__n_estimators': (100, 200),
}

附言.这不是代码的唯一问题.为了在GridSearchCV中使用多个作业,您需要使正在使用的所有对象都可复制.这是通过实现方法get_paramsset_params来实现的,您可以从 BaseEstimator 混合.

P.S. it's not the only problem with your code. In order to use multiple jobs in GridSearchCV, you need to make all objects you're using copy-able. This is achieved by implementing methods get_params and set_params, you can borrow them from BaseEstimator mixin.

这篇关于(Python-sklearn)如何通过gridsearchcv将参数传递给自定义ModelTransformer类的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 03:11