本文介绍了神经网络 - 输入值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个可能微不足道的问题,但在我看过的任何地方都没有描述过.我正在研究神经网络,到处都是一些理论和一些简单的例子,其中一些 0 和 1 作为输入.我想知道:我是否必须只将一个值作为一个神经元的输入值,或者它可以是一个向量,比如说,3 个值(例如 RGB 颜色)?

I have a question that may be trivial but it's not described anywhere i've looked. I'm studying neural networks and everywhere i look there's some theory and some trivial example with some 0s and 1s as an input. I'm wondering: do i have to put only one value as an input value for one neuron, or can it be a vector of, let's say, 3 values (RGB colour for example)?

推荐答案

上述答案在技术上是正确的,但并没有解释简单的事实:永远 没有您需要的情况给单个神经元一个数字向量.

The above answers are technically correct, but don't explain the simple truth: there is never a situation where you'd need to give a vector of numbers to a single neuron.

从实际的角度来看,这是因为(如早期解决方案之一所示)您可以只为向量中的每个数字设置一个神经元,然后将所有这些数字作为单个神经元的输入.这应该会让你在训练后得到你想要的行为,因为第二层神经元可以有效地利用整个向量.

From a practical standpoint this is because (as one of the earlier solutions has shown) you can just have a neuron for each number in a vector and then have all of those be the input to a single neuron. This should get you your desired behavior after training, as the second layer neuron can effectively make use of the entire vector.

从数学的角度来看,编码理论有一个基本定理,即任何数字向量都可以表示为单个数字.因此,如果您真的不想要额外的神经元层,您可以简单地将 RGB 值编码为一个数字并将其输入到神经元.不过,这个编码功能可能会使大多数学习问题变得更加困难,所以我怀疑这个解决方案在大多数情况下是否值得.

From a mathematical standpoint, there is a fundamental theorem of coding theory that states that any vector of numbers can be represented as a single number. Thus, if you really don't want an extra layer of neurons, you could simply encode the RGB values into a single number and input that to the neuron. Though, this coding function would probably make most learning problems more difficult, so I doubt this solution would be worth it in most cases.

总结:人工神经网络的使用没有给输入单元一个向量,但不会因此失去计算能力.

To summarize: artificial neural networks are used without giving a vector to an input unit, but lose no computational power because of this.

这篇关于神经网络 - 输入值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-16 15:35