问题描述
我只是从 keras 和机器学习开始.
I'm only beginning with keras and machine learning in general.
我训练了一个模型来对来自 2 个类别的图像进行分类,并使用 model.save()
保存它.这是我使用的代码:
I trained a model to classify images from 2 classes and saved it using model.save()
. Here is the code I used:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
# dimensions of our images.
img_width, img_height = 320, 240
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 200 #total
nb_validation_samples = 10 # total
epochs = 6
batch_size = 10
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=5)
model.save('model.h5')
它以 0.98 的准确率成功训练,非常好.为了在新图像上加载和测试这个模型,我使用了以下代码:
It successfully trained with 0.98 accuracy which is pretty good. To load and test this model on new images, I used the below code:
from keras.models import load_model
import cv2
import numpy as np
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
img = cv2.imread('test.jpg')
img = cv2.resize(img,(320,240))
img = np.reshape(img,[1,320,240,3])
classes = model.predict_classes(img)
print classes
它输出:
[[0]]
为什么不给出类的实际名称以及为什么[[0]]
?
Why wouldn't it give out the actual name of the class and why [[0]]
?
提前致谢.
推荐答案
keras predict_classes (docs) 输出类预测的 numpy 数组.在您的模型案例中,您的最后一个(softmax)层的最高激活神经元的索引.[[0]]
意味着你的模型预测你的测试数据是 0 类.(通常你会传递多张图像,结果看起来像 [[0], [1], [1], [0]]
)
keras predict_classes (docs) outputs A numpy array of class predictions. Which in your model case, the index of neuron of highest activation from your last(softmax) layer. [[0]]
means that your model predicted that your test data is class 0. (usually you will be passing multiple image, and the result will look like [[0], [1], [1], [0]]
)
您必须将实际标签(例如 'cancer'、'notcancer'
)转换为二进制编码(0
代表 'cancer'、1
代码> 表示非癌症")进行二元分类.然后,您将 [[0]]
的序列输出解释为具有类标签 'cancer'
You must convert your actual label (e.g. 'cancer', 'not cancer'
) into binary encoding (0
for 'cancer', 1
for 'not cancer') for binary classification. Then you will interpret your sequence output of [[0]]
as having class label 'cancer'
这篇关于如何使用 Keras 中的训练模型预测输入图像?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!