问题描述
我正在使用 nltk 的 wordnet API.当我将一个同义词集与另一个同义词集进行比较时,我得到 None
但当我反过来比较它们时,我得到一个浮点值.
它们不应该给出相同的值吗?有没有解释或者是wordnet的bug?
示例:
wn.synset('car.n.01').path_similarity(wn.synset('automobile.v.01')) # 无wn.synset('automobile.v.01').path_similarity(wn.synset('car.n.01')) # 0.06666666666666667
从技术上讲,如果没有虚拟根,car
和 automobile
同义词集将没有相互链接:
现在当 path_similarity()
传递给 shortest_path_distance()
(https://nltk.googlecode.com/svn/trunk/doc/api/nltk.corpus.reader.wordnet-pysrc.html#Synset.shortest_path_distance) 然后到 hypernym_distances()
,它将尝试调用一个上位词列表来检查它们的距离,而无需 simulate_root = True
,automobile
同义词集不会连接到 car
,反之亦然:
所以理论上,正确的 path_similarity
是 0/None ,但由于 simulate_root=simulate_root 和 self._needs_root()
参数,
nltk.corpus.wordnet.path_similarity()
在 NLTK 的 API 中是不可交换的.
但是代码也没有错误/错误,因为通过根进行的任何同义词距离的比较将不断远离,因为虚拟 *ROOT*
的位置永远不会改变,所以最佳做法是这样做以计算 path_similarity:
I am using the wordnet API from nltk.When I compare one synset with another I got None
but when I compare them the other way around I get a float value.
Shouldn't they give the same value?Is there an explanation or is this a bug of wordnet?
Example:
wn.synset('car.n.01').path_similarity(wn.synset('automobile.v.01')) # None
wn.synset('automobile.v.01').path_similarity(wn.synset('car.n.01')) # 0.06666666666666667
Technically without the dummy root, both car
and automobile
synsets would have no link to each other:
>>> from nltk.corpus import wordnet as wn
>>> x = wn.synset('car.n.01')
>>> y = wn.synset('automobile.v.01')
>>> print x.shortest_path_distance(y)
None
>>> print y.shortest_path_distance(x)
None
Now, let's look at the dummy root issue closely. Firstly, there is a neat function in NLTK that says whether a synset needs a dummy root:
>>> x._needs_root()
False
>>> y._needs_root()
True
Next, when you look at the path_similarity
code (http://nltk.googlecode.com/svn-/trunk/doc/api/nltk.corpus.reader.wordnet-pysrc.html#Synset.path_similarity), you can see:
def path_similarity(self, other, verbose=False, simulate_root=True):
distance = self.shortest_path_distance(other,
simulate_root=simulate_root and self._needs_root())
if distance is None or distance < 0:
return None
return 1.0 / (distance + 1)
So for automobile
synset, this parameter simulate_root=simulate_root and self._needs_root()
will always be True
when you try y.path_similarity(x)
and when you try x.path_similarity(y)
it will always be False
since x._needs_root()
is False
:
>>> True and y._needs_root()
True
>>> True and x._needs_root()
False
Now when path_similarity()
pass down to shortest_path_distance()
(https://nltk.googlecode.com/svn/trunk/doc/api/nltk.corpus.reader.wordnet-pysrc.html#Synset.shortest_path_distance) and then to hypernym_distances()
, it will try to call for a list of hypernyms to check their distances, without simulate_root = True
, the automobile
synset will not connect to the car
and vice versa:
>>> y.hypernym_distances(simulate_root=True)
set([(Synset('automobile.v.01'), 0), (Synset('*ROOT*'), 2), (Synset('travel.v.01'), 1)])
>>> y.hypernym_distances()
set([(Synset('automobile.v.01'), 0), (Synset('travel.v.01'), 1)])
>>> x.hypernym_distances()
set([(Synset('object.n.01'), 8), (Synset('self-propelled_vehicle.n.01'), 2), (Synset('whole.n.02'), 8), (Synset('artifact.n.01'), 7), (Synset('physical_entity.n.01'), 10), (Synset('entity.n.01'), 11), (Synset('object.n.01'), 9), (Synset('instrumentality.n.03'), 5), (Synset('motor_vehicle.n.01'), 1), (Synset('vehicle.n.01'), 4), (Synset('entity.n.01'), 10), (Synset('physical_entity.n.01'), 9), (Synset('whole.n.02'), 7), (Synset('conveyance.n.03'), 5), (Synset('wheeled_vehicle.n.01'), 3), (Synset('artifact.n.01'), 6), (Synset('car.n.01'), 0), (Synset('container.n.01'), 4), (Synset('instrumentality.n.03'), 6)])
So theoretically, the right path_similarity
is 0 / None , but because of the simulate_root=simulate_root and self._needs_root()
parameter,
nltk.corpus.wordnet.path_similarity()
in NLTK's API is not commutative.
BUT the code is also not wrong/bugged, since comparison of any synset distance by going through the root will be constantly far since the position of the dummy *ROOT*
will never change, so the best of practice is to do this to calculate path_similarity:
>>> from nltk.corpus import wordnet as wn
>>> x = wn.synset('car.n.01')
>>> y = wn.synset('automobile.v.01')
# When you NEVER want a non-zero value, since going to
# the *ROOT* will always get you some sort of distance
# from synset x to synset y
>>> max(wn.path_similarity(x,y), wn.path_similarity(y,x))
# when you can allow None in synset similarity comparison
>>> min(wn.path_similarity(x,y), wn.path_similarity(y,x))
这篇关于wordnet 路径相似度是可交换的吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!